L’impératif écologique, c’est la Prospérité. Pas la sobriété.

Auteurs: Prof. Corentin de Salle et Prof. Damien Ernst. Accéder à une version pdf de cet article : https://hdl.handle.net/2268/312476   Aussi douloureuse soit-elle, la décroissance serait, nous serine-t-on, le passage obligé vers la neutralité carbone. Mais [...]

31 janvier 2024|

A momentum for Ukrainian strikes against the Russian oil industry has arrived

Authors: Prof. Damien Ernst and Prof. Corentin de Salle. Download the pdf version of this article: https://hdl.handle.net/2268/312439 In February 2022, the outbreak of the Russian-Ukrainian war upset the balance of the world, particularly where energy [...]

31 janvier 2024|

Un momentum pour des frappes ukrainiennes massives contre l’industrie pétrolière russe est arrivé

Auteurs : Prof. Damien ERNST et Prof. Corentin de Salle. Télécharger la version pdf de cet article: https://hdl.handle.net/2268/312421   Février 2022, le déclenchement de la guerre russo-ukrainienne bouleverse les équilibres du monde. Celui de l’énergie en [...]

31 janvier 2024|

IMP-MARL: Infrastructure Management Planning via MARL

Pascal Leroy, Pablo G. Morato, Jonathan Pisane, Athanasios Kolios, Damien Ernst. 37th Conference on Neural Information Processing Systems (NeurIPS 2023) Track on Datasets and Benchmarks. https://hdl.handle.net/2268/304451 Infrastructure Management Planning (IMP) is a modern application addressing current societal and environmental concerns. In IMP, agents plan inspections, repairs or retrofits to prevent failures in structures like bridges or wind turbines. The goal is to minimise the risk of system failures by considering the probability of failure and the associated consequences.

29 novembre 2023|

Warming up recurrent neural networks to maximise reachable multistability greatly improves learning

Recurrent neural networks (RNNs) are a special type of artificial neural networks that can be used to process sequences, such as time series or sentences, through an internal state that serves as a memory. However, training RNNs is known to be difficult, especially for long sequences. Indeed, when gradients are backpropagated through a high number of timesteps, they are more prone to either vanish or explode, making it difficult to learn long-term dependencies. Previous work (Vecoven et al., 2021) introduced RNNs with multistable dynamics and showed that it can improve the learning of such dependencies. In this new paper (Lambrechts et al., 2023), we expand this idea by first deriving a measure of multistability, called the VAA. This metric is then used to unveil the correlation between the reachable multistability of an RNN and its learning of long-term dependencies, both in a supervised and a reinforcement learning setting. Secondly, we establish a derivable approximation of our new measure. Gradient ascent steps can then be performed on a usual RNN using batches of sequences, in order to maximise that approximation. This aims at promoting multistability within the RNN's internal dynamics, and it works for any RNN, including the classical GRU and LSTM networks. Finally, we test this new pretraining method, called the warmup, on both supervised and reinforcement learning benchmarks. RNNs pretrained with the warmup are shown to learn faster and better the long-term dependencies than their non-pretrained counterparts.

24 août 2023|