Advanced algorithms for learning Q-functions

Presentation of Sergey Levine adapted by Damien Ernst

Plan

- 1. How can we make Q-learning work better in practice?
- 2. A generalized view of Q-learning algorithms
- 3. Tricks for improving Q-learning in practice
- 4. Continuous Q-learning methods
- Goals:
 - Understand how to implement Q-learning so that it can be used with complex function approximators
 - Understand how to extend Q-learning to continuous actions

Recap: Learning Q-functions

full fitted Q-iteration algorithm:

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy 2. set $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ 3. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$

online Q iteration algorithm:

▶ 1. take some action
$$\mathbf{a}_i$$
 and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$

2.
$$\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

3.
$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$$

What's wrong?

online Q iteration algorithm:

1. take some action
$$\mathbf{a}_i$$
 and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$
2. $\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$
3. $\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i)$
isn't this just gradient descent? that converges, right?

Q-learning is *not* gradient descent!

$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{i}, \mathbf{a}_{i})(Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) - \mathbf{r}(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_{i}, \mathbf{a}'_{i})])$$

no gradient through target value

Correlated samples in online Q-learning

Another solution: replay buffers

2. set $\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ 3. set $\phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2$ any policy will work! (with broad support just load data from a buffer here still use one gradient step

Q-learning with replay buffer

Q-learning with a replay buffer:

- 1. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ from \mathcal{B}
- 2. $\phi \leftarrow \phi \alpha \sum_{i} \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_{i}, \mathbf{a}_{i})(Q_{\phi}(\mathbf{s}_{i}, \mathbf{a}_{i}) [r(\mathbf{s}_{i}, \mathbf{a}_{i}) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_{i}, \mathbf{a}'_{i})])$

+ multiple samples in the batch (low-variance gradient)

but where does the data come from?

need to periodically feed the replay buffer...

+ samples are no longer correlated

Putting it together

full Q-learning with replay buffer:

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add it to \mathcal{B}

 $\begin{array}{c} & \textbf{K} \times \end{array} \begin{array}{c} 2. \text{ sample a batch } (\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i) \text{ from } \mathcal{B} \\ & 3. \phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi} (\mathbf{s}_i, \mathbf{a}_i) (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)]) \end{array} \end{array}$

K = 1 is common, though larger K more efficient

What is still wrong?

online Q iteration algorithm:

- 1. take some action \mathbf{a}_i and observe $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$
- 2. $\mathbf{y}_i = r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$ 3. $\phi \leftarrow \phi \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) \mathbf{y}_i)$

Q-learning is not gradient descent!

$$\phi \leftarrow \phi - \alpha \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i) (Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - (r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)))$$

no gradient through target value

This is still a problem!

Why has fitted-Q iteration still an edge over Qlearning with replay buffer?

full Q-learning with replay buffer:

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add it to \mathcal{B}

 $\begin{array}{c} \mathbf{k} \times \\ \mathbf{k}$

one gradient step, moving target

full fitted Q-iteration algorithm:

1. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy

2. set
$$\mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)$$

 $\mathbf{K} \stackrel{2. \text{ set } \mathbf{y}_i \leftarrow r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'_i} Q_{\phi}(\mathbf{s}'_i, \mathbf{a}'_i)}{3. \text{ set } \phi \leftarrow \arg \min_{\phi} \frac{1}{2} \sum_i \|Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - \mathbf{y}_i\|^2}$

perfectly well-defined, stable regression

Q-learning algorithm with replay buffer and target network

1. save target network parameters:
$$\phi' \leftarrow \phi$$

2. collect dataset $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add it to \mathcal{B}
 $N \times \mathbf{s}$
3. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ from \mathcal{B}
4. $\phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_i, \mathbf{a}'_i)])$

A more general view

Q-learning with replay buffer and target network:

1. save target network parameters: $\phi' \leftarrow \phi$ 2. collect M datapoints $\{(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)\}$ using some policy, add them to \mathcal{B} $N \times \mathbf{s}$ 3. sample a batch $(\mathbf{s}_i, \mathbf{a}_i, \mathbf{s}'_i, r_i)$ from \mathcal{B} 4. $\phi \leftarrow \phi - \alpha \sum_i \frac{dQ_{\phi}}{d\phi}(\mathbf{s}_i, \mathbf{a}_i)(Q_{\phi}(\mathbf{s}_i, \mathbf{a}_i) - [r(\mathbf{s}_i, \mathbf{a}_i) + \gamma \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}'_i, \mathbf{a}'_i)])$

A more general view

- Online Q-learning : evict immediately, process 1, process 2, and process 3 all run at the same speed
- DQN: process 1 and process 3 run at the same speed, process 2 is slow
- Fitted Q-iteration: process 3 and process 2 are combined in a single process. But variants of FQI with target networks could exist.

Overestimation in Q-learning

target value $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j)$

this last term is the problem

imagine we have two random variables: X_1 and X_2

 $E[\max(X_1, X_2)] \ge \max(E[X_1], E[X_2])$

 $Q_{\phi'}(\mathbf{s}', \mathbf{a}')$ is not perfect – it looks "noisy"

hence $\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}')$ overestimates the next value!

note that $\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}') = Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$ value also comes from $Q_{\phi'}$ action selected according to $Q_{\phi'}$

Double Q-learning

 $E[\max(X_1, X_2)] \ge \max(E[X_1], E[X_2])$

note that $\max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}') = Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$ value also comes from $Q_{\phi'}$ action selected according to $Q_{\phi'}$ if the noise in these is decorrelated, the problem goes away!

idea: don't use the same network to choose the action and evaluate value! "double" Q-learning: use two networks:

$$Q_{\phi_{A}}(\mathbf{s}, \mathbf{a}) \leftarrow r + \gamma Q_{\phi_{B}}(\mathbf{s}', \arg\max_{\mathbf{a}'} Q_{\phi_{A}}(\mathbf{s}'))$$
$$Q_{\phi_{B}}(\mathbf{s}, \mathbf{a}) \leftarrow r + \gamma Q_{\phi_{A}}(\mathbf{s}', \arg\max_{\mathbf{a}'} Q_{\phi_{B}}(\mathbf{s}'))$$

if the two Q's are noisy in *different* ways, there is no problem

Double Q-learning in practice

where to get two Q-functions?

just use the current and target networks!

standard Q-learning: $y = r + \gamma Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'} Q_{\phi'}(\mathbf{s}', \mathbf{a}'))$

double Q-learning: $y = r + \gamma Q_{\phi'}(\mathbf{s}', \arg \max_{\mathbf{a}'} (\phi \mathbf{s}', \mathbf{a}'))$

just use current network (not target network) to evaluate action still use target network to evaluate value!

Q-learning with continuous actions

What's the problem with continuous actions?

 $\pi(\mathbf{a}_t | \mathbf{s}_t) = \begin{cases} 1 \text{ if } \mathbf{a}_t = \arg \max_{\mathbf{a}_t} Q_\phi(\mathbf{s}_t, \mathbf{a}_t) & \text{this max} \\ 0 \text{ otherwise} & \\ target \text{ value } y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mathbf{a}'_j) & \text{this max} \\ particularly problematic (inner loop of training) & \\ particularly$

How do we perform the max?

Option 1: optimization

- gradient based optimization (e.g., SGD) a bit slow in the inner loop
- action space typically low-dimensional what about stochastic optimization?

Q-learning with stochastic optimization

Simple solution:

 $\max_{\mathbf{a}} Q(\mathbf{s}, \mathbf{a}) \approx \max \{Q(\mathbf{s}, \mathbf{a}_1), \dots, Q(\mathbf{s}, \mathbf{a}_N)\}$ ($\mathbf{a}_1, \dots, \mathbf{a}_N$) sampled from some distribution (e.g., uniform)

but... do we care? How good does the target need to be anyway?

More accurate solution:

- cross-entropy method (CEM)
 - simple iterative stochastic optimization
- Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 - substantially less simple iterative stochastic optimization

works OK, for up to about 40

dimensions

+ dead simple+ efficiently parallelizable- not very accurate

Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

$$Q_{\phi}(\mathbf{s}, \mathbf{a}) = -\frac{1}{2} (\mathbf{a} - \mu_{\phi}(\mathbf{s}))^T P_{\phi}(\mathbf{s}) (\mathbf{a} - \mu_{\phi}(\mathbf{s})) + V_{\phi}(\mathbf{s})$$

NAF: Normalized Advantage Functions

 $\arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = \mu_{\phi}(\mathbf{s}) \qquad \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = V_{\phi}(\mathbf{s})$

- + no change to algorithm
- + just as efficient as Q-learning
- loses representational power

Gu, Lillicrap, Sutskever, L., ICML 2016

Q-learning with continuous actions

Option 3: learn an approximate maximizer DDPG (Lillicrap et al., ICLR 2016)

"deterministic" actor-critic (really approximate Q-learning)

 $\max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}) = Q_{\phi}(\mathbf{s}, \arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a}))$

idea: train another network $\mu_{\theta}(\mathbf{s})$ such that $\mu_{\theta}(\mathbf{s}) \approx \arg \max_{\mathbf{a}} Q_{\phi}(\mathbf{s}, \mathbf{a})$

how? just solve $\theta \leftarrow \arg \max_{\theta} Q_{\phi}(\mathbf{s}, \mu_{\theta}(\mathbf{s}))$ $\frac{dQ_{\phi}}{d\theta} = \frac{d\mathbf{a}}{d\theta} \frac{dQ_{\phi}}{d\mathbf{a}}$ new target $y_j = r_j + \gamma \max_{\mathbf{a}'_j} Q_{\phi'}(\mathbf{s}'_j, \mu_{\theta}(\mathbf{s}'_j))$

Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG:

1. take some action a_i and observe (s_i, a_i, s'_i, r_i), add it to B
2. sample mini-batch {s_j, a_j, s'_j, r_j} from B uniformly
3. compute y_j = r_j + γ max_{a'_j} Q_{φ'}(s'_j, μ_{θ'}(s'_j)) using target nets Q_{φ'} and μ_{θ'}
4. φ ← φ − α ∑_j dQ_φ/dφ (s_j, a_j)(Q_φ(s_j, a_j) − y_j)
5. θ ← θ + β ∑_j dµ/dθ (s_j) dQ_φ/da (s_j, a)
6. update φ' and θ' (e.g., Polyak averaging)

Simple practical tips for Q-learning

- Q-learning takes some care to stabilize
 - Test on easy, reliable tasks first, make sure your implementation is correct

Figure: From T. Schaul, J. Quan, I. Antonoglou, and D. Silver. "Prioritized experience replay". *arXiv preprint arXiv:1511.05952* (2015), Figure 7

- Large replay buffers help improve stability
 - Looks more like fitted Q-iteration
- Double Q-learning helps *a lot* in practice, simple and no downsides
- Start with high exploration (epsilon) and gradually reduce

Fitted Q-iteration in a latent space

- "Autonomous reinforcement learning from raw visual data," Lange & Riedmiller '12
- Q-learning on top of latent space learned with autoencoder
- Uses fitted Q-iteration
- Extra random trees for function approximation (but neural net for embedding)

Q-learning with convolutional networks

- "Human-level control through deep reinforcement learning," Mnih et al. '13
- Q-learning with convolutional networks
- Uses replay buffer and target network
- One-step backup
- One gradient step
- Can be improved a lot with double Q-learning (and other tricks)

Q-learning with continuous actions

- "Continuous control with deep reinforcement learning," Lillicrap et al. '15
- Continuous actions with maximizer network
- Uses replay buffer and target network (with Polyak averaging)
- One-step backup
- One gradient step per simulator step

Q-learning on a real robot

- "Robotic manipulation with deep reinforcement learning and ...," Gu*, Holly*, et al. '17
- Continuous actions with NAF (quadratic in actions)
- Uses replay buffer and target network
- One-step backup
- Four gradient steps per simulator step for efficiency
- Parallelized across multiple robots

Q-learning suggested readings

- Classic papers
 - Watkins. (1989). Learning from delayed rewards: introduces Q-learning
 - Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural networks
 - Ernst, Geurts, Wehenkel. (2005). Tree-based batch mode reinforcement learning.

• Deep reinforcement learning Q-learning papers

- Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement learning: early image-based Q-learning method using autoencoders to construct embeddings
- Mnih et al. (2013). Human-level control through deep reinforcement learning: Q-learning with convolutional networks for playing Atari.
- Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning: a very effective trick to improve performance of deep Q-learning.
- Lillicrap et al. (2016). Continuous control with deep reinforcement learning: continuous Qlearning with actor network for approximate maximization.
- Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based acceleration: continuous Q-learning with action-quadratic value functions.
- Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network architectures for deep reinforcement learning: separates value and advantage estimation in Q-function.