
Advanced algorithms for 
learning Q-functions

Presentation of Sergey Levine
adapted by Damien Ernst



Plan

1. How can we make Q-learning work better in practice?
2. A generalized view of Q-learning algorithms
3. Tricks for improving Q-learning in practice
4. Continuous Q-learning methods
• Goals:

• Understand how to implement Q-learning so that it can be used with 
complex function approximators

• Understand how to extend Q-learning to continuous actions



Recap: Learning Q-functions

generate 
samples (i.e. 

run the policy)

fit a model to 
estimate return

improve the 
policy



What’s wrong?

Q-learning is not gradient descent!

no gradient through target value



Correlated samples in online Q-learning
- sequential states are strongly correlated
- target value is always changing

synchronized parallel Q-learning asynchronous parallel Q-learning



Another solution: replay buffers
special case with K = 1, and one gradient step

any policy will work! (with broad support)

just load data from a buffer here

dataset of transitions

Fitted Q-iteration

still use one gradient step



Q-learning with replay buffer

dataset of transitions
(“replay buffer”)

off-policy
Q-learning

+ samples are no longer correlated

+ multiple samples in the batch (low-variance gradient)

but where does the data come from?

need to periodically feed the replay buffer…



Putting it together

K = 1 is common, though 
larger K more efficient

dataset of transitions
(“replay buffer”)

off-policy
Q-learning



What is still wrong?

Q-learning is not gradient descent!

no gradient through target value

use replay buffer

This is still a 
problem!



Why has fitted-Q iteration still an edge over Q-
learning with replay buffer? 

one gradient step, moving target 

perfectly well-defined, stable regression



Q-learning algorithm with replay buffer and 
target network



A more general view

dataset of transitions
(“replay buffer”)

target 
parameters

current 
parameters



A more general view

dataset of transitions
(“replay buffer”)

target 
parameters

current 
parameters

• Online Q-learning : evict immediately, process 1, process 2, and process 3 all run 
at the same speed

• DQN: process 1 and process 3 run at the same speed, process 2 is slow
• Fitted Q-iteration: process 3 and process 2 are combined in a single process. But 

variants of FQI with target networks could exist. 



Overestimation in Q-learning



Double Q-learning



Double Q-learning in practice



Q-learning with continuous actions

What’s the problem with continuous actions?

this max

this max

How do we perform the max?

particularly problematic (inner loop of training)

Option 1: optimization

• gradient based optimization (e.g., SGD) a bit slow in the inner loop
• action space typically low-dimensional – what about stochastic 

optimization?



Q-learning with stochastic optimization

Simple solution:
+ dead simple

+ efficiently parallelizable

- not very accurate

but… do we care? How good does the target need to be anyway?

More accurate solution:

• cross-entropy method (CEM)
• simple iterative stochastic optimization

• Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
• substantially less simple iterative stochastic optimization

works OK, for up to about 40 
dimensions



Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

Gu, Lillicrap, Sutskever, L., ICML 2016

NAF: Normalized Advantage Functions
+ no change to algorithm

+ just as efficient as Q-learning

- loses representational power



Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG (Lillicrap et al., ICLR 2016) “deterministic” actor-critic 
(really approximate Q-learning)



Q-learning with continuous actions

Option 3: learn an approximate maximizer



Simple practical tips for Q-learning

• Q-learning takes some care to stabilize
• Test on easy, reliable tasks first, make sure your implementation is correct

• Large replay buffers help improve stability
• Looks more like fitted Q-iteration

• Double Q-learning helps a lot in practice, simple and no downsides
• Start with high exploration (epsilon) and gradually reduce

Slide partly borrowed from J. Schulman



Fitted Q-iteration in a latent space

• “Autonomous 
reinforcement 
learning from raw 
visual data,” Lange & 
Riedmiller ‘12

• Q-learning on top of 
latent space learned 
with autoencoder

• Uses fitted Q-iteration
• Extra random trees for 

function 
approximation (but 
neural net for 
embedding)



Q-learning with convolutional networks

• “Human-level control 
through deep 
reinforcement learning,” 
Mnih et al. ‘13

• Q-learning with 
convolutional networks

• Uses replay buffer and 
target network

• One-step backup
• One gradient step
• Can be improved a lot 

with double Q-learning 
(and other tricks)



Q-learning with continuous actions

• “Continuous control with deep 
reinforcement learning,” Lillicrap
et al. ‘15

• Continuous actions with 
maximizer network

• Uses replay buffer and target 
network (with Polyak averaging)

• One-step backup
• One gradient step per simulator 

step



Q-learning on a real robot

• “Robotic manipulation 
with deep reinforcement 
learning and …,” Gu*, 
Holly*, et al. ‘17

• Continuous actions with 
NAF (quadratic in actions)

• Uses replay buffer and 
target network 

• One-step backup
• Four gradient steps per 

simulator step for 
efficiency

• Parallelized across 
multiple robots



Q-learning suggested readings
• Classic papers

• Watkins. (1989). Learning from delayed rewards: introduces Q-learning
• Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural networks
• Ernst, Geurts, Wehenkel. (2005). Tree-based batch mode reinforcement learning. 

• Deep reinforcement learning Q-learning papers
• Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement learning: early 

image-based Q-learning method using autoencoders to construct embeddings
• Mnih et al. (2013). Human-level control through deep reinforcement learning: Q-learning with 

convolutional networks for playing Atari.
• Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning: a very 

effective trick to improve performance of deep Q-learning.
• Lillicrap et al. (2016). Continuous control with deep reinforcement learning: continuous Q-

learning with actor network for approximate maximization.
• Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based acceleration: 

continuous Q-learning with action-quadratic value functions.
• Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network architectures for 

deep reinforcement learning: separates value and advantage estimation in Q-function.


