Advanced algorithms for
learning Q-functions

Presentation of Sergey Levine

adapted by Damien Ernst

Plan

1. How can we make Q-learning work better in practice?
2. A generalized view of Q-learning algorithms

3. Tricks for improving Q-learning in practice

4. Continuous Q-learning methods

* Goals:

e Understand how to implement Q-learning so that it can be used with
complex function approximators
e Understand how to extend Q-learning to continuous actions

Recap: Learning Q-functions

full fitted Q-iteration algorithm:

1. collect dataset {(s;,a;,s;,r;)} using some policy

))+ N
2. set y; < 7(8i,a;) + v maxa Qu(s], aj) Qg4(s,a) « r(s,a) +ymaxa Qu(s’,a’)

fltamodelto

|

generate
samples (i.e.
run the pollcy)

online (iteration algorithm:

improve the
policy

: /
1. take some action a; and observe (s;,a;,s;, ;) a = arg max, Qu(s, a)

2. y; = r(s;, ai) + ymaxa Qu(s), al)
3. ¢ o G dgb > (s4,a;)(Qe(si,ai) —yi)

What’s wrong?

online @) iteration algorithm:

= 1. take some action a; and observe (s;,a;,s;, ;)
2. Y: = T(Szaaz) +’7maXa’ Q¢(R 7,)

40 these are correlated!
39— ¢ — a5 (si, i) (Qe(sis ai) — i)

isn’t this just gradient descent? that converges, right?

Q-learning is not gradient descent!

b ¢ — a9 (s,) (Qulsiai) — (i a) +ymaxa Qus),al)

no gradient through target value

Correlated samples in online Q-learning

online () iteration algorithm: - sequential states are strongly correlated
@ 1. take some action a; and observe (s;,a;,s;, ;) - target value is always changing
2. oo — ol d¢ “(si,a;)(Qg(si,a;) — [r(si;a;) + v maxa Q¢(b ai)l)

P N A NV SN

synchronized parallel Q-learning asynchronous parallel Q-learning

get (s,a,s’,r)<—l I I I

update ¢ +— BE—Sl_E__m

get (s,a8,) —ll 0 0 B

update ¢ +— B o=

NN N H

Another solution: replay buffers

online () iteration algorithm:

special case with K = 1, and one gradient step
1. take some action a; and observe (s;,a;,s;, ;)

2. ¢ ¢ — a e (si,a:)(Qo(si,a0) — [r(si,) + Y maxa Qu(s), a})))

full fitted Q-iteration algorithm:

1. collect dataset {(s;,a;,s;,;)} using some policy any policy will work! (with broad support)
£ 2. set y; < T(Si, ai) + 7y maXg! Q¢(S;, a;) just load data from a buffer here
X
. 2
3. set ¢ < arg miny % Zz HQ¢(S@', a;) —yill still use one gradient step

dataset of transitions

Fitted Q-iteration

Il

o— ¢

Q-learning with replay buffer

Q-learning with a replay buffer:
/F> 1. sample a batch (s;,a;,s;,r;) from B

|
2 p—p—a), %(Si, a;)(Qe(si,a;) — [r(si,a;) + ymaxa Qu(s;, aj)])

but where does the data come from?

need to periodically feed the replay buffer...

D

<87 a, Sl? T) T
il dataset of transitions D
~— (“replay buffer”)
a 7' - off-policy
@ a Q-learning
@
A B
S~ w —

m(als) (e.g., e-greedy)

Putting it together

full Q-learning with replay buffer:

1. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B
. K =1 is common, though
2. sample a batch (Si> a;,8; ,7;) from B larger K more efficient

3. ¢ ¢ —ay, T(si,a)(Qulsiai) — [r(si, ;) +vmaxa Qu(s), a})])

—

~ dataset of transitions
(“replay buffer”)
off-policy
Q-learning

m(als) (e.g., e-greedy)

What is still wrong?

online Q) iteration algorithm:

= 1. take some action a; and observe (s;,a;,s;, ;)

l 2. yi =1r(si,a;) + ymaxa Qy(s;, a)) W
@ 3. (b — ¢ dQq¢ (Su az)(qu(Sia ai)) |

— y—== — .
d¢ Yi use replay buffer

Q-learning is not gradient descent!

This is still a

¢ ¢ — oL d¢ (si, ;) (Qe(si; a;) —(r(si,a;) + v maxa Q¢(P ag)]
problem!

no gradient through target value

Why has fitted-Q iteration still an edge over Q-
learning with replay buffer?

full Q-learning with replay buffer:
1. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B
2. sample a batch (si, a;,s;,r;) from B

3. ¢ ¢ — X, T (siai)(Qulsiai) — [r(siya;) +vmaxa Q(s),a})])

one gradient step, moving target

K x

full fitted Q-iteration algorithm:

1. collect dataset {(s;,a;,s;,r;)} using some policy
2. set y; < 7(si,a;) + v maxa Qp(s;,aj)
K><

. set ¢ +— argming 3 >, [|Qy(si, a;) — yill”

perfectly well-defined, stable regression

Q-learning algorithm with replay buffer and
target network

1. save target network parameters: ¢’ < ¢
2. collect dataset {(s;,a;,s;,r;)} using some policy, add it to B

NXK 3. sample a batch (s;, a;, s}, r;) from B
X

4 ¢ d—ad, Telsia)(Qolsiai) — [r(si,a;) + y maxe Qu (s), a})])

A more general view

Q-learning with replay buffer and target network:
1. save target network parameters: ¢’ < ¢
2. collect M datapoints {(s;,a;,s;,r;)} using some policy, add them to B

3. sample a batch (s;, a;, s, ;) from B

4 Q< O — O‘Zz dc%b (Szaaz)(ch(Szaaz) — [r(si,a;) + v maxay be’(Si ;)])

process 2
target update
|

process 1: data collection

(s,a,s",7)

4

< |

m(als) (e.g., e-greedy) evict old data

A more general view

process 1: data collection current
parameters
(S7 a? Slv T) - ¢
dataset of tranahonN
(“replay buffer”)
J‘ ‘\“\

m(als) (e.g., e-greedy)

process 2
target update

target
¢l

* Online Q-learning : evict immediately, process 1, process 2, and process 3 all run
at the same speed

* DQN: process 1 and process 3 run at the same speed, process 2 is slow

* Fitted Q-iteration: process 3 and process 2 are combined in a single process. But
variants of FQl with target networks could exist.

Overestimation in Q-learning

target value y; = r; + Y MaXa/ Qo (S;'v a;)

this last term is the problem

imagine we have two random variables: X; and X5
Elmax (X1, X2)] > max(F[X4], F[X2])

Q4 (s’,a’) is not perfect — it looks “noisy”

hence max, Qg (s’,a’) overestimates the next value!

note that max, Qg (s',a’") = Qg (s', argmax, Qu (s',a’))

value also comes from)y action selected according to @)y

Double Q-learning

E[maX(Xl, XQ)] Z maX(E[Xl], E[XQ])

note that maxa Qg (s',a’) = Qu (s', argmaxa Qy (s',a’))

value also comes from)y action selected according to (g

N /

if the noise in these is decorrelated, the problem goes away!
idea: don’t use the same network to choose the action and evaluate value!
“double” Q-learning: use two networks:
Qo4 (8,8) =1 +7Qp, (8", argmax Qy, (s'))

Qop(s,a) 1 +7Q, (s argmax Qy (s))

AN /

if the two Q’s are noisy in different ways, there is no problem

Double Q-learning in practice

where to get two Q-functions?

just use the current and target networks!

standard Q-learning: y = r + vQ 4 (s’, argmax, Qy (s’,a’))

double Q-learning: y = r + vQ4 (s, arg maxy/ ’ ,a'))
just use current network (not target network) to evaluate action

still use target network to evaluate value!

Q-learning with continuous actions

What’s the problem with continuous actions?

m(ag|sy) = { 1if a :@Xat qu(s@ this max

0 otherwisé

target value y; = r; + maXy! Q¢,(s;. ,D this max

particularly problematic (inner loop of training)

How do we perform the max?

Option 1: optimization

 gradient based optimization (e.g., SGD) a bit slow in the inner loop

* action space typically low-dimensional — what about stochastic
optimization?

Q-learning with stochastic optimization

Simple solution:
mSJXQ(S, a) ~ max {Q(s,a1),...,Q(s,an)}
(ay,...,ay) sampled from some distribution (e.g., uniform) - not very accurate

but... do we care? How good does the target need to be anyway?

More accurate solution:

* cross-entropy method (CEM) works OK, for up to about 40
: : : : e . dimensions
* simple iterative stochastic optimization

e Covariance Matrix Adaptation Evolution Strategy (CMA-ES)
 substantially less simple iterative stochastic optimization

Easily maximizable Q-functions

Option 2: use function class that is easy to optimize

| o ' R~ I—) 7
Qu(s,2) = 3 (@~ () Po(s)a — (o) + Vals) ST I KM P

= S) ‘/
NAF Architecture.

NAF: Normalized Advantage Functions

- loses representational power
arg max Qs(s,a) = py(s) max Qe(s,a) = Vy(s)

Gu, Lillicrap, Sutskever, L., ICML 2016

Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG (Lillicrap et al., ICLR 2016) deterministic” actor-critic

(really approximate Q-learning)
maxa Q4 (s, a) = Qy(s,argmaxys Q4 (s, a))

idea: train another network pg(s) such that pp(s) ~ argmaxa Q4(s,a)

dQ¢ B da dQ¢
dd df da

how? just solve 6 <— argmaxg Q4(s, io(s))

new target y; = r; + 7 MaXy! ngf(sg-, ,UJH(S}))

Q-learning with continuous actions

Option 3: learn an approximate maximizer

DDPG:

take some action a; and observe (s;, a;, s, r;), add it to B

sample mini-batch {s;,a;, s, r;} from B uniformly
compute y; = 7“] + 7 maxy, qu(s Mos(8})) using target nets Qg and pg
¢<—¢_a23 dé (Sj7aj)(Q¢(Sjaaj) yj)
d
0 < 9+BZJ a0 7(s;) féif (sj,a)
update ¢" and 6’ (e.g., Polyak averaging)

A T o e

Simple practical tips for Q-learning

* Q-learning takes some care to stabilize
* Test on easy, reliable tasks first, make sure your implementation is correct

Venture
Pong) Breakout Video Pinball

Mg 400000

320000

240000

160000 [

800004/ S|\
sl

Figure: From T. Schaul, J. Quan, I. Antonoglou, and D. Silver. “Prioritized experience
replay”. arXiv preprint arXiv:1511.05952 (2015), Figure 7

* Large replay buffers help improve stability
e Looks more like fitted Q-iteration

* Double Q-learning helps a lot in practice, simple and no downsides
» Start with high exploration (epsilon) and gradually reduce

Slide partly borrowed from J. Schulman

Fitted Q-iteration in a latent space

e “Autonomous
reinforcement
learning from raw
visual data,” Lange &
Riedmiller ‘12

* Q-learning on top of
latent space learned
with autoencoder

e Uses fitted Q-iteration

e Extra random trees for
function
approximation (but
neural net for
embedding)

feature space
improved by

Reinforcement

Learning

action a

Q-learning with convolutional networks

e “Human-level control
through deep
reinforcement learning,”
Mnih et al. ‘13

* Q-learning with
convolutional networks

* Uses replay buffer and
target network oo aa

* One-step backup

* One gradient step hl l l

e Can be improved a lot
with double Q-learning
(and other tricks)

Q-learning with continuous actions

e “Continuous control with deep
reinforcement learning,” Lillicrap
et al. ‘15

 Continuous actions with
maximizer network

e Uses replay buffer and target
network (with Polyak averaging)

* One-step backup

* One gradient step per simulator
step

Q-learning on a real robot

* “Robotic manipulation
with deep reinforcement
learning and ...,” Gu*,
Holly*, et al. ‘17

e Continuous actions with
NAF (quadratic in actions)

* Uses replay buffer and
target network

* One-step backup

* Four gradient steps per
simulator step for
efficiency

e Parallelized across
multiple robots

Q-learning suggested readings

* Classic papers

Watkins. (1989). Learning from delayed rewards: introduces Q-learning
Riedmiller. (2005). Neural fitted Q-iteration: batch-mode Q-learning with neural networks
Ernst, Geurts, Wehenkel. (2005). Tree-based batch mode reinforcement learning.

* Deep reinforcement learning Q-learning papers

Lange, Riedmiller. (2010). Deep auto-encoder neural networks in reinforcement learning: early
image-based Q-learning method using autoencoders to construct embeddings

Mnih et al. (2013). Human-level control through deep reinforcement learning: Q-learning with
convolutional networks for playing Atari.

Van Hasselt, Guez, Silver. (2015). Deep reinforcement learning with double Q-learning: a very
effective trick to improve performance of deep Q-learning.

Lillicrap et al. (2016). Continuous control with deep reinforcement learning: continuous Q-
learning with actor network for approximate maximization.

Gu, Lillicrap, Stuskever, L. (2016). Continuous deep Q-learning with model-based acceleration:
continuous Q-learning with action-quadratic value functions.

Wang, Schaul, Hessel, van Hasselt, Lanctot, de Freitas (2016). Dueling network architectures for
deep reinforcement learning: separates value and advantage estimation in Q-function.

