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Abstract

The combinatorial explosion that plagues planning and reinforcement learning (RL) algorithms can
be moderated using state abstraction. Prohibitively large task representations can be condensed such
that essential information is preserved, and consequently, solutions are tractably computable. However,
exact abstractions, which treat only fully-identical situations as equivalent, fail to present opportunities
for abstraction in environments where no two situations are exactly alike. In this work, we investigate ap-
proximate state abstractions, which treat nearly-identical situations as equivalent. We present theoretical
guarantees of the quality of behaviors derived from four types of approximate abstractions. Addition-
ally, we empirically demonstrate that approximate abstractions lead to reduction in task complexity and
bounded loss of optimality of behavior in a variety of environments.

1 Introduction

Abstraction plays a fundamental role in learning. Through abstraction, intelligent agents may reason about
only the salient features of their environment while ignoring what is irrelevant. Consequently, agents are able
to solve considerably more complex problems than they would be able to without the use of abstraction. How-
ever, exact abstractions, which treat only fully-identical situations as equivalent, require complete knowledge
that is computationally intractable to obtain. Furthermore, often no two situations are identical, so exact
abstractions are often ineffective. To overcome these issues, we investigate approximate abstractions that en-
able agents to treat sufficiently similar situations as identical. This work characterizes the impact of equating
“sufficiently similar” states in the context of planning and RL in Markov Decision Processes (MDPs). The
remainder of our introduction contextualizes these intuitions in MDPs.
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Figure 1: We investigate families of approximate state abstraction functions that induce abstract MDP’s
whose optimal policies have bounded value in the original MDP.
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Solving for optimal behavior in MDPs in a planning setting is known to be P-Complete in the size of
the state space [28, 25]. Similarly, many RL algorithms for solving MDPs are known to require a number of
samples polynomial in the size of the state space [31]. Although polynomial runtime or sample complexity
may seem like a reasonable constraint, the size of the state space of an MDP grows super-polynomially with
the number of variables that characterize the domain - a result of Bellman’s curse of dimensionality. Thus,
solutions polynomial in state space size are often ineffective for sufficiently complex tasks. For instance, a
robot involved in a pick-and-place task might be able to employ planning algorithms to solve for how to
manipulate some objects into a desired configuration in time polynomial in the number of states, but the
number of states it must consider grows exponentially with the number of objects with which it is working
[1].

Thus, a key research agenda for planning and RL is leveraging abstraction to reduce large state spaces [2,
21, 10, 12, 6]. This agenda has given rise to methods that reduce ground MDPs with large state spaces
to abstract MDPs with smaller state spaces by aggregating states according to some notion of equality or
similarity. In the context of MDPs, we understand exact abstractions as those that aggregate states with
equal values of particular quantities, for example, optimal Q-values. Existing work has characterized how
exact abstractions can fully maintain optimality in MDPs [24, 8].

The thesis of this work is that performing approximate abstraction in MDPs by relaxing the state
aggregation criteria from equality to similarity achieves polynomially bounded error in the resulting behavior
while offering three benefits. First, approximate abstractions employ the sort of knowledge that we expect
a planning or learning algorithm to compute without fully solving the MDP. In contrast, exact abstractions
often require solving for optimal behavior, thereby defeating the purpose of abstraction. Second, because
of their relaxed criteria, approximate abstractions can achieve greater degrees of compression than exact
abstractions. This difference is particularly important in environments where no two states are identical.
Third, because the state aggregation criteria are relaxed to near equality, approximate abstractions are able
to tune the aggressiveness of abstraction by adjusting what they consider sufficiently similar states.

We support this thesis by describing four different types of approximate abstraction functions that pre-
serve near-optimal behavior by aggregating states on different criteria: φ̃Q∗,ε, on similar optimal Q-values,

φ̃model,ε, on similarity of rewards and transitions, φ̃bolt,ε, on similarity of a Boltzmann distribution over

optimal Q-values, and φ̃mult,ε, on similarity of a multinomial distribution over optimal Q-values. Further-
more, we empirically demonstrate the relationship between the degree of compression and error incurred on
a variety of MDPs.

This paper is organized as follows. In the next section, we introduce the necessary terminology and
background of MDPs and state abstraction. Section 3 surveys existing work on state abstraction applied to
sequential decision making. Section 5 introduces our primary result; bounds on the error guaranteed by four
classes of approximate state abstraction. The following two sections introduce simulated domains used in
experiments (Section 6), and a discussion of experiments in which we apply one class of approximate abstrac-
tion to a variety of different tasks to empirically illustrate the relationship between degree of compression
and error incurred (Section 7).

2 MDPs and Sequential Decision Making

An MDP is a problem representation for sequential decision making agents, represented by a five-tuple:
〈S,A, T ,R, γ〉. Here, S is a finite state space; A is a finite set of actions available to the agent; T denotes
T (s, a, s′), the probability of an agent transitioning to state s′ ∈ S after applying action a ∈ A in state
s ∈ S; R(s, a) denotes the reward received by the agent for executing action a in state s; γ ∈ [0, 1] is a
discount factor that determines how much the agent prefers future rewards over immediate rewards. We
assume without loss of generality that the range of all reward functions is normalized to [0, 1]. The solution
to an MDP is called a policy, denoted π : S 7→ A.

The objective of an agent is to solve for the policy that maximizes its expected discounted reward from
any state, denoted π∗. We denote the expected discounted reward for following policy π from state s as the
value of the state under that policy, V π(s). We similarly denote the expected discounted reward for taking
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action a ∈ A and then following policy π from state s forever after as Qπ(s, a), defined by the Bellman
Equation as:

Qπ(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′)Qπ(s′, π(s′)). (1)

We let RMax denote the maximum reward (which is 1), and QMax denote the maximum Q value, which
is RMax

1−γ . The value function, V , defined under a given policy, denoted V π(s), is defined as:

V π(s) = Qπ(s, π(s)). (2)

Lastly, we denote the value and Q functions under the optimal policy as V ∗ or V π
∗

and Q∗ or Qπ
∗
, respec-

tively. For further background, see Kaelbling et al. [22].

3 Related Work

Several other projects have addressed similar topics.

3.1 Approximate State Abstraction

Dean et al. [9] leverage the notion of bisimulation to investigate partitioning an MDP’s state space into
clusters of states whose transition model and reward function are within ε of each other. They develop an
algorithm called Interval Value Iteration (IVI) that converges to the correct bounds on a family of abstract
MDPs called Bounded MDPs.

Several approaches build on Dean et al. [9]. Ferns et al. [14, 15] investigated state similarity metrics
for MDPs; they bounded the value difference of ground states and abstract states for several bisimulation
metrics that induce an abstract MDP. This differs from our work which develops a theory of abstraction
that bounds the suboptimality of applying the optimal policy of an abstract MDP to its ground MDP,
covering four types of state abstraction, one of which closely parallels bisimulation. Even-Dar and Mansour
[13] analyzed different distance metrics used in identifying state space partitions subject to ε-similarity, also
providing value bounds (their Lemma 4) for ε-homogeneity subject to the L∞ norm, which parallels our
Claim 2. Ortner [27] developed an algorithm for learning partitions in an online setting by taking advantage
of the confidence bounds for T and R provided by UCRL [3].

Hutter [18, 17] investigates state aggregation beyond the MDP setting. Hutter presents a variety of
results for aggregation functions in reinforcement learning. Most relevant to our investigation is Hutter’s
Theorem 8, which illustrates properties of aggregating states based on similar Q values. Hutter’s Theorem
part (a) parallels our Claim: both bound the value difference between ground and abstraction states, and
part (b) is analogous to our Lemma 1: both bound the value difference of applying the optimal abstraction
policy in the ground, and part (c) is a repetition of the comment given by Li et al. [24] that Q∗ abstractions
preserve the optimal value function. For Lemma 1, our proof strategies differ from Hutter’s, but the result
is the same.

Approximate state abstraction has also been applied to the planning problem, in which the agent is given
a model of its environment and must compute a plan that satisfies some goal. Hostetler et al. [16] apply state
abstraction to Monte Carlo Tree Search and expectimax search, giving value bounds of applying the optimal
abstract action in the ground tree(s), similarly to our setting. Dearden and Boutilier [10] also formalize state-
abstraction for planning, focusing on abstractions that are quickly computed and offer bounded value. Their
primary analysis is on abstractions that remove negligible literals from the planning domain description,
yielding value bounds for these abstractions and a means of incrementally improving abstract solutions to
planning problems. Jiang et al. [20] analyze a similar setting, applying abstractions to the Upper Confidence
Bound applied to Trees algorithm adapted for planning, introduced by Kocsis and Szepesvári [23].

Mandel et al. [26] advance Bayesian aggregation in RL to define Thompson Clustering for Reinforcement
Learning (TCRL), an extension of which achieves near-optimal Bayesian regret bounds. Jiang [19] analyze
the problem of choosing between two candidate abstractions. They develop an algorithm based on statistical
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tests that trades of the approximation error with the estimation error of the two abstractions, yielding a loss
bound on the quality of the chosen policy.

3.2 Specific Abstraction Algorithms

Many previous works have targeted the creation of algorithms that enable state abstraction for MDPs.
Andre and Russell [2] investigated a method for state abstraction in hierarchical reinforcement learning
leveraging a programming language called ALISP that promotes the notion of safe state abstraction. Agents
programmed using ALISP can ignore irrelevant parts of the state, achieving abstractions that maintain
optimality. Dietterich [12] developed MAXQ, a framework for composing tasks into an abstracted hierarchy
where state aggregation can be applied. Bakker and Schmidhuber [4] also target hierarchical abstraction,
focusing on subgoal discovery. Jong and Stone [21] introduced a method called policy-irrelevance in which
agents identify (online) which state variables may be safely abstracted away in a factored-state MDP. Dayan
and Hinton [7] develop “Feudal Reinforcement Learning” which presents an early form of hierarchical RL
that restructures Q-Learning to manage the decomposition of a task into subtasks. For a more complete
survey of algorithms that leverage state abstraction in past reinforcement-learning papers, see Li et al. [24],
and for a survey of early works on hierarchical reinforcement learning, see Barto and Mahadevan [5].

3.3 Exact Abstraction Framework

Li et al. [24] developed a framework for exact state abstraction in MDPs. In particular, the authors defined
five types of state aggregation functions, inspired by existing methods for state aggregation in MDPs. We
generalize two of these five types, φQ∗ and φmodel, to the approximate abstraction case. Our generalizations
are equivalent to theirs when exact criteria are used (i.e. ε = 0). Additionally, when exact criteria are used
our bounds indicate that no value is lost, which is one of core results of Li et al. [24]. Walsh et al. [34] build
on the framework they previously developed by showing empirically how to transfer abstractions between
structurally related MDPs.

4 Abstraction Notation

We build upon the notation used by Li et al. [24], who introduced a unifying theoretical framework for state
abstraction in MDPs.

Definition 1 (MG, MA): We understand an abstraction as a mapping from the state space of a ground
MDP, MG, to that of an abstract MDP, MA, using a state aggregation scheme. Consequently, this mapping
induces an abstract MDP. Let MG = 〈SG,A, TG,RG, γ〉 and MA = 〈SA,A, TA,RA, γ〉.

Definition 2 (SA, φ): The states in the abstract MDP are constructed by applying a state aggregation
function, φ, to the states in the ground MDP, SA. More specifically, φ maps a state in the ground MDP to
a state in the abstract MDP:

SA = {φ(s) | s ∈ SG}. (3)

Definition 3 (G): Given a φ, each ground state has associated with it the ground states with which it is
aggregated. Similarly, each abstract state has its constituent ground states. We let G be the function that
retrieves these states:

G(s) =

{
{g ∈ SG | φ(g) = φ(s)}, if s ∈ SG,
{g ∈ SG | φ(g) = s}, if s ∈ SA.

(4)

The abstract reward function and abstract transition dynamics for each abstract state are a weighted
combination of the rewards and transitions for each ground state in the abstract state.
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Definition 4 (ω(s)): We refer to the weight associated with a ground state, s ∈ SG by ω(s). The only
restriction placed on the weighting scheme is that it induces a probability distribution on the ground states
of each abstract state:

∀s ∈ SG

 ∑
s∈G(s)

ω(s)

 = 1 AND ω(s) ∈ [0, 1]. (5)

Definition 5 (RA): The abstract reward function RA : SA ×A 7→ [0, 1] is a weighted sum of the rewards
of each of the ground states that map to the same abstract state:

RA(s, a) =
∑

g∈G(s)

RG(g, a)ω(g). (6)

Definition 6 (TA): The abstract transition function TA : SA × A × SA 7→ [0, 1] is a weighted sum of the
transitions of each of the ground states that map to the same abstract state:

TA(s, a, s′) =
∑

g∈G(s)

∑
g′∈G(s′)

TG(g, a, g′)ω(g). (7)

5 Approximate State Abstraction

Here, we introduce our formal analysis of approximate state abstraction, including results bounding the
error associated with these abstraction methods. In particular, we demonstrate that abstractions based on
approximate Q∗ similarity (5.2), approximate model similarity (5.3), and approximate similarity between
distributions over Q∗, for both Boltzmann (5.4) and multinomial (5.5) distributions induce abstract MDPs
for which the optimal policy has bounded error in the ground MDP.

We first introduce some additional notation.

Definition 7 (π∗
A, π∗

G): We let π∗A : SA → A and π∗G : SG → A stand for the optimal policies in the
abstract and ground MDPs, respectively.

We are interested in how the optimal policy in the abstract MDP performs in the ground MDP. As such,
we formally define the policy in the ground MDP derived from optimal behavior in the abstract MDP:

Definition 8 (πGA): Given a state s ∈ SG and a state aggregation function, φ,

πGA(s) = π∗A(φ(s)). (8)

We now define types of abstraction based on functions of state–action pairs.

Definition 9 (φ̃f,ε): Given a function f : SG ×A → R and a fixed non-negative ε ∈ R, we define φ̃f,ε as
a type of approximate state aggregation function that satisfies the following for any two ground states s1, s2:

φ̃f,ε(s1) = φ̃f,ε(s2)→ ∀a |f(s1, a)− f(s2, a)| ≤ ε. (9)

That is, when φ̃f,ε aggregates states, all aggregated states have values of f within ε of each other for all
actions.

Finally, we estliabsh notation to distinguish between the ground and abstract value (V ) and action value
(Q) functions.

Definition 10 (QG, VG): Let QG = Qπ
∗
G : SG ×A → R and VG = V π

∗
G : SG → R denote the optimal Q

and optimal value functions in the ground MDP.

Definition 11 (QA, VA): Let QA = Qπ
∗
A : SA ×A → R and VA = V π

∗
A : SA → R stand for the optimal Q

and optimal value functions in the abstract MDP.

5.1 Main Result

We now introduce the main result of the paper.
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Theorem 1. There exist at least four types of approximate state aggregation functions, φ̃Q∗,ε, φ̃model,ε,

φ̃bolt,ε and φ̃mult,ε, for which the optimal policy in the abstract MDP, applied to the ground MDP, has
suboptimality bounded polynomially in ε:

∀s∈SGV
π∗G
G (s)− V πGA

G (s) ≤ 2εηf (10)

Where ηf differs between abstraction function families:

ηQ∗ =
1

(1− γ)2

ηmodel =
1 + γ (|SG| − 1)

(1− γ)3

ηbolt =

(
|A|
1−γ + εkbolt + kbolt

)
(1− γ)2

ηmult =

(
|A|
1−γ + kmult

)
(1− γ)2

For ηbolt and ηmult, we also assume that the difference in the normalizing terms of each distribution is
bounded by some non-negative constant, kmult, kbolt ∈ R, of ε:∣∣∣∣∣∣

∑
i

QG(s1, ai)−
∑
j

QG(s2, aj)

∣∣∣∣∣∣ ≤ kmult × ε∣∣∣∣∣∣
∑
i

eQG(s1,ai) −
∑
j

eQG(s2,aj)

∣∣∣∣∣∣ ≤ kbolt × ε
Naturally, the value bound of Equation 10 is meaningless for 2εηf ≥ RMax

1−γ = 1
1−γ , since this is the maximum

possible value in any MDP (and we assumed the range of R is [0, 1]). In light of this, observe that for ε = 0,
all of the above bounds are exactly 0. Any value of ε interpolated between these two points achieves different
degrees of abstraction, with different degrees of bounded loss.

We now introduce each approximate aggregation family and prove the theorem by proving the specific
value bound for each function type.

5.2 Optimal Q Function: φ̃Q∗,ε

We consider an approximate version of Li et al. [24]’s φQ∗ . In our abstraction, states are aggregated together
when their optimal Q-values are within ε.

Definition 12 (φ̃Q∗,ε): An approximate Q function abstraction has the same form as Equation 9:

φ̃Q∗,ε(s1) = φ̃Q∗,ε(s2)→ ∀a |QG(s1, a)−QG(s2, a)| ≤ ε. (11)

Lemma 1. When a φ̃Q∗,ε type abstraction is used to create the abstract MDP:

∀s∈SGV
π∗G
G (s)− V πGA

G (s) ≤ 2ε

(1− γ)2
. (12)

Proof of Lemma 1: We first demonstrate that Q-values in the abstract MDP are close to Q-values in the
ground MDP (Claim 1). We next leverage Claim 1 to demonstrate that the optimal action in the abstract
MDP is nearly optimal in the ground MDP (Claim 2). Lastly, we use Claim 2 to conclude Lemma 1 (Claim 3).
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Claim 1. Optimal Q-values in the abstract MDP closely resemble optimal Q-values in the ground MDP:

∀sG∈SG,a|QG(sG, a)−QA(φ̃Q∗,ε(sG), a)| ≤ ε

1− γ
. (13)

Consider a non-Markovian decision process of the same form as an MDP, MT = 〈ST ,AG,RT , TT , γ〉,
parameterized by integer an T , such that for the first T time steps the reward function, transition dynamics
and state space are those of the abstract MDP, MA, and after T time steps the reward function, transition
dynamics and state spaces are those of MG. Thus,

ST =

{
SG if T = 0

SA o/w

RT (s, a) =

{
RG(s, a) if T = 0

RA(s, a) o/w

TT (s, a, s′) =


TG(s, a, s′) if T = 0∑
g∈G(s)

[TG(g, a, s′)ω(g)] if T = 1

TA(s, a, s′) o/w

The Q-value of state s in ST for action a is:

QT (s, a) =


QG(s, a) if T = 0∑
g∈G(s)

[QG(g, a)ω(g)] if T = 1

RA(s, a) + σT−1(s, a) o/w

(14)

where:
σT−1(s, a) = γ

∑
sA′∈SA

TA(s, a, sA
′) max

a′
QT−1(sA

′, a′).

We proceed by induction on T to show that:

∀T,sG∈SG,a|QT (sT , a)−QG(sG, a)| ≤
T−1∑
t=0

εγt, (15)

where sT = sG if T = 0 and sT = φ̃Q∗,ε(sG) otherwise.

Base Case: T = 0

When T = 0, QT = QG, so this base case trivially follows.

Base Case: T = 1

By definition of QT , we have that Q1 is

Q1(s, a) =
∑

g∈G(s)

[QG(g, a)ω(g)] .

Since all co-aggregated states have Q-values within ε of one another and ω(g) induces a convex combination,

Q1(sT , a) ≤ εγt + ε+QG(sG, a)

∴ |Q1(sT , a)−QG(sG, a)| ≤
1∑
t=0

εγt.
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Inductive Case: T > 1

We assume as our inductive hypothesis that:

∀sG∈SG,a|QT−1(sT , a)−QG(sG, a)| ≤
T−2∑
t=0

εγt.

Consider a fixed but arbitrary state, sG ∈ SG, and fixed but arbitrary action a. Since T > 1, sT is φ̃Q∗,ε(sG).
By definition of QT (sT , a), RA, TA:

QT (sT , a) =
∑

g∈G(sT )

ω(g) ×

RG(g, a) + γ
∑
g′∈SG

TG(g, a, g′) max
a′

QT−1(g′, a′)

 .
Applying our inductive hypothesis yields:

QT (sT , a) ≤
∑

g∈G(sT )

ω(g)×
[
RG(g, a) + γ

∑
g′∈SG

TG(g, a, g′) max
a′

(QG(g′, a′) +

T−2∑
t=0

εγt)

]
.

Since all aggregated states have Q-values within ε of one another:

QT (sT , a) ≤ γ
T−2∑
t=0

εγt + ε+QG(sG, a).

Since sG is arbitrary we conclude Equation 15. As T →∞,
∑T−1
t=0 εγt → ε

1−γ by the sum of infinite geometric
series and QT → QA. Thus, Equation 15 yields Claim 1.

Claim 2. Consider a fixed but arbitrary state, sG ∈ SG and its corresponding abstract state sA = φ̃Q∗,ε(sG).
Let a∗G stand for the optimal action in sG, and a∗A stand for the optimal action in sA:

a∗G = arg max
a

QG(sG, a), a∗A = arg max
a

QA(sA, a).

The optimal action in the abstract MDP has a Q-value in the ground MDP that is nearly optimal:

VG(sG) ≤ QG(sG, a
∗
A) +

2ε

1− γ
. (16)

By Claim 1,

VG(sG) = QG(sG, a
∗
G) ≤ QA(sA, a

∗
G) +

ε

1− γ
. (17)

By the definition of a∗A, we know that

QA(sA, a
∗
G) +

ε

1− γ
≤ QA(sA, a

∗
A) +

ε

1− γ
. (18)

Lastly, again by Claim 1, we know

QA(sA, a
∗
A) +

ε

1− γ
≤ QG(sg, a

∗
A) +

2ε

1− γ
. (19)

Therefore, Equation 16 follows.

Claim 3. Lemma 1 follows from Claim 2.
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Consider the policy for MG of following the optimal abstract policy π∗A for t steps and then following the
optimal ground policy π∗G in MG:

πA,t(s) =

{
π∗G(s) if t = 0

πGA(s) if t > 0
(20)

For t > 0, the value of this policy for sG ∈ SG in the ground MDP is:

V
πA,t

G (sG) = RG(s, πA,t(sG)) + γ
∑

sG′∈SG

TG(sG, a, sG
′)V

πA,t−1

G (sG
′).

For t = 0, V
πA,t

G (sG) is simply VG(sG).
We now show by induction on t that

∀t,sG∈SgVG(sG) ≤ V πA,t

G (sG) +

t∑
i=0

γi
2ε

1− γ
. (21)

Base Case: t = 0

By definition, when t = 0, V
πA,t

G = VG, so our bound trivially holds in this case.

Inductive Case: t > 0

Consider a fixed but arbitrary state sG ∈ SG. We assume for our inductive hypothesis that

VG(sG) ≤ V πA,t−1

G (sG) +

t−1∑
i=0

γi
2ε

1− γ
. (22)

By definition,

V
πA,t

G (sG) = RG(s, πA,t(sG)) + γ
∑
g′

TG(sG, a, sG
′)V

πA,t−1

G (sG
′).

Applying our inductive hypothesis yields:

V
πA,t

G (sG) ≥ RG(sG, πA,t(sG)) + γ
∑
sG′

TG(sG, πA,t(sG), sG
′)

(
VG(sG

′)−
t−1∑
i=0

γi
2ε

1− γ

)
.

Therefore,

V
πA,t

G (sG) ≥ −γ
t−1∑
i=0

γi
2ε

1− γ
+QG(sG, πA,t(sG)).

Applying Claim 2 yields:

V
πA,t

G (sG) ≥ −γ
t−1∑
i=0

γi
2ε

1− γ
− 2ε

1− γ
+ VG(sG)

∴ VG(sG) ≤ V πA,t

G (sG) +

t∑
i=0

γi
2ε

1− γ
.

Since sG was arbitrary, we conclude that our bound holds for all states in SG for the inductive case. Thus,
from our base case and induction, we conclude that

∀t,sG∈SgV
π∗G
G (sG) ≤ V πA,t

G (sG) +

t∑
i=0

γi
2ε

1− γ
. (23)

Note that as t→∞,
∑t
i=0 γ

i 2ε
1−γ →

2ε
(1−γ)2 by the sum of infinite geometric series and πA,t(s)→ πGA. Thus,

we conclude Lemma 1.
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5.3 Model Similarity: φ̃model,ε

Now, consider an approximate version of Li et al. [24]’s φmodel, where states are aggregated together when
their rewards and transitions are within ε.

Definition 13 (φ̃model,ε): We let φ̃model,ε define a type of abstraction that, for fixed ε, satisfies:

φ̃model,ε(s1) = φ̃model,ε(s2)→

∀a |RG(s1, a)−RG(s2, a)| ≤ ε AND ∀sA∈SA

∣∣∣∣∣∣
∑

sG′∈G(sA)

[TG(s1, a, sG
′)− TG(s2, a, sG

′)]

∣∣∣∣∣∣ ≤ ε. (24)

Lemma 2. When SA is created using a φ̃model,ε type:

∀s∈SGV
π∗G
G (s)− V πGA

G (s) ≤ 2ε+ 2γε (|SG| − 1)

(1− γ)3
. (25)

Proof of Lemma 2:

Let B be the maximum Q-value difference between any pair of ground states in the same abstract state for
φ̃model,ε:

B = max
s1,s2,a

|QG(s1, a)−QG(s2, a)|,

where s1, s2 ∈ G(sA). First, we expand:

B = max
s1,s2,a

∣∣∣∣RG(s1, a)−RG(s2, a) + γ
∑

sG′∈SG

[
(TG(s1, a, sG

′)− TG(s2, a, sG
′)) max

a′
QG(sG

′, a′)

]∣∣∣∣ (26)

Since difference of rewards is bounded by ε:

B ≤ ε+ γ
∑

sA∈SA

∑
sG′∈G(sA)

[
(TG(s1, a, sG

′) − TG(s2, a, sG
′)) max

a′
QG(sG

′, a′)

]
. (27)

By similarity of transitions under φ̃model,ε:

B ≤ ε+ γQMax
∑

sA∈SA

ε ≤ ε+ γ|SG|εQMax.

Recall that QMax = RMax
1−γ , and we defined RMax = 1:

B ≤ ε+ γ(|SG| − 1)ε

1− γ
.

Since the Q-values of ground states grouped under φ̃model,ε are strictly less than B, we can understand

φ̃model,ε as a type of φ̃Q∗,B . Applying Lemma 1 yields Lemma 2.

5.4 Boltzmann over Optimal Q: φ̃bolt,ε

Here, we introduce φ̃bolt,ε, which aggregates states with similar Boltzmann distributions on Q-values. This
type of abstractions is appealing as Boltzmman distributions balance exploration and exploitation [32]. We

find this type particularly interesting for abstraction purposes as, unlike φ̃Q∗,ε, it allows for aggregation when
Q-value ratios are similar but their magnitudes are different.

10



Definition 14 (φ̃bolt,ε): We let φ̃bolt,ε define a type of abstractions that, for fixed ε, satisfies:

φ̃bolt,ε(s1) = φ̃bolt,ε(s2)→ ∀a
∣∣∣∣ eQG(s1,a)∑

b e
QG(s1,b)

− eQG(s2,a)∑
b e
QG(s2,b)

∣∣∣∣ ≤ ε. (28)

We also assume that the difference in normalizing terms is bounded by some non-negative constant, kbolt ∈ R,
of ε: ∣∣∣∣∣∑

b

eQG(s1,b) −
∑
b

eQG(s2,b)

∣∣∣∣∣ ≤ kbolt × ε. (29)

Lemma 3. When SA is created using a function of the φ̃bolt,ε type, for some non-negative constant k ∈ R:

∀s∈SGV
π∗G
G (s)− V πGA

G (s) ≤
2ε
(
|A|
1−γ + εkbolt + kbolt

)
(1− γ)2

. (30)

We use the approximation for ex, with δ error:

ex = 1 + x+ δ ≈ 1 + x. (31)

We let δ1 denote the error in approximating eQG(s1,a) and δ2 denote the error in approximating eQG(s2,a).

Proof of Lemma 3:

By the approximation in Equation 31 and the assumption in Equation 29:∣∣∣∣∣∣∣∣∣
1 +QG(s1, a) + δ1∑

j e
QG(s1,aj)

− 1 +QG(s2, a) + δ2∑
j e
QG(s1,aj)±kε︸︷︷︸

a

∣∣∣∣∣∣∣∣∣ ≤ ε (32)

Either term a is positive or negative. First suppose the former. It follows by algebra that:

− ε ≤ 1 +QG(s1, a) + δ1∑
j e
QG(s1,aj)

− 1 +QG(s2, a) + δ2∑
j e
QG(s1,aj) + εkbolt

≤ ε (33)

Moving terms:

− ε

kε+
∑
j

eQG(s1,aj)

− δ1 + δ2 ≤

εkbolt

(
1 +QG(s1, a) + δ1∑

j e
QG(s1,aj)

)
+QG(s1, a)−QG(s2, a) ≤

ε

εkbolt +
∑
j

eQG(s1,aj)

− δ1 + δ2 (34)

When a is the negative case, it follows that:

− ε ≤ 1 +QG(s1, a) + δ1∑
j e
QG(s1,aj)

− 1 +QG(s2, a) + δ2∑
j e
QG(s1,aj) − εkbolt

≤ ε (35)
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By similar algebra that yielded Equation 34:

− ε

−εkbolt +
∑
j

eQG(s1,aj)

− δ1 + δ2 ≤

− kε

(
1 +QG(s1, a) + δ1∑

j e
QG(s1,aj)

)
+QG(s1, a)−QG(s2, a) ≤

ε

εkbolt +
∑
j

eQG(s1,aj)

− δ1 + δ2 (36)

Combining Equation 34 and Equation 36 results in:

|QG(s1, a)−QG(s2, a)| ≤ ε
(
|A|

1− γ
+ εkbolt + kbolt

)
. (37)

Consequently, we can consider φ̃bolt,ε as a special case of the φ̃Q∗,B type, where B = ε
(
|A|
1−γ + εkbolt + kbolt

)
.

Lemma 3 then follows from Lemma 1.

5.5 Multinomial over Optimal Q: φ̃mult,ε

We consider approximate abstractions derived from a multinomial distribution over Q∗ for similar reasons
to the Boltzmann distribution. Additionally, the multinomial distribution is appealing for its simplicity.

Definition 15 (φ̃mult,ε): We let φ̃mult,ε define a type of abstraction that, for fixed ε, satisfies

φ̃mult,ε(s1) = φ̃mult,ε(s2)→ ∀a
∣∣∣∣ QG(s1, a)∑

bQG(s1, b)
− QG(s1, a)∑

bQG(s1, b)

∣∣∣∣ ≤ ε. (38)

We also assume that the difference in normalizing terms is bounded by some non-negative constant, kmult ∈ R,
of ε: ∣∣∣∣∣∣

∑
i

QG(s1, ai)−
∑
j

QG(s2, aj)

∣∣∣∣∣∣ ≤ kmult × ε. (39)

Lemma 4. When SA is created using a function of the φ̃mult,ε type, for some non-negative constant kmult ∈
R:

∀s∈SM
V
π∗G
G (s)− V πGA

G (s) ≤
2ε
(
|A|
1−γ + kmult

)
(1− γ)2

(40)
Proof of Lemma 4

The proof follows an identical strategy to that of Lemma 3, but without the approximation ex ≈ 1 + x.

6 Example Domains

We apply approximate abstraction to five example domains—NChain, Upworld, Taxi, Minefield and Ran-
dom. These domains were selected for their diversity—NChain is relatively simple, Upworld is particularly
illustrative of the power of abstraction, Taxi is goal-based and hierarchical in nature, Minefield is stochastic,
and Random MDP has many near-optimal policies.

Our code base1 provides implementations for abstracting arbitrary MDPs as well as visualizing and
evaluating the resulting abstract MDPs. We use the graph-visualization library GraphStream [29] and the
planning and RL library, BURLAP2. For all experiments, we set γ to 0.95.

1https://github.com/david-abel/state_abstraction
2http://burlap.cs.brown.edu/
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6.1 Visualizations

We provide visuals of both the ground MDP and resulting abstract MDP for each domain. A grey circle
indicates a state and colored arrows indicate transitions. The thickness of the arrow indicates how much
reward is associated with that transition. In the ground MDPs, states are labeled with a number. In
the abstract MDPs, we indicate which ground states were collapsed to each abstract state by labelling the
abstract states with their ground states.

6.1.1 NChain

NChain is a simple MDP investigated in the Bayesian RL literature due to the interesting exploration
problem it poses [11]. In our implementation, we set N = 10, normalized rewards between 0 and 1, and used
a slip probability of 0.2. An NChain instance (N = 10) and its abstraction are visualized in Figure6.1.2.

In all states, the agent has two actions available: advance down the chain, or return to state 0. The agent
receives .2 reward for returning to state 0, and no reward for advancing down the chain. The exception is that
when the agent transitions to the last state in the chain, it receives 1.0 reward. Transitions also have small
slip probability ρ, such that the applied action results in the opposite dynamics. In our implementation, we
set N = 10 and ρ = 0.2.

6.1.2 Upworld

The Upworld task is an N ×M grid in which the agent starts in the lower left corner. The agent may
move left, right, and up. The agent receives positive reward for transitioning to any state at the top of the
grid, where moving up in the top cells self transitions. the agent receives 0 reward for all other transitions.
Consequently, moving up is always the optimal action, since moving left and right does not change the
agent’s manhattan distance to positive reward. During experimentation, we set N = 10, M = 4. An
Upworld instance (N = 10, M = 4) and its abstraction are visualized in Figure6.1.2.

Upworld illustrates a compelling property with respect to state abstraction: the optimal exact Q∗ ab-
straction function (when ε = 0) can always construct an abstract MDP with |SA| = N , the height of the grid,
with no change in the value of the optimal policy. Consequently, letting M be arbitrarily large, Upworld
offers an arbitrary reduction in the size of the MDP through abstraction, at no cost to the value of the
optimal policy. This is a result of the property that all states in the same row have the same Q values:

Remark: The optimal exact abstraction, φQ∗,0, induces an abstract MDP with an optimal policy of equal
value to the true optimal policy, and reduces the size of the state space from N×M (ground) to N (abstract).

(a) Ground NChain (b) Abstract NChain (c) Ground Upworld (d) Abstract Up-
world

Figure 2: Comparison of the ground and abstract MDPs, under φ̃Q∗,ε, with ε = 0.5

13



(a) Ground Taxi (b) Abstract Taxi

Figure 3: Comparison of the ground and abstract Taxi MDPs under an φ̃Q∗,ε abstraction, with ε = 0.03.

6.1.3 Taxi

Taxi has long been studied by the hierarchical RL literature [12]. The agent, operating in a Grid World style
domain [30], may move left, right, up, and down, as well as pick up a passenger and drop off a passenger.
The goal is achieved when the agent has taken all passengers to their destinations.

We visualize the compression on a simple 626 Taxi instance in Figure 3. As stated above, we visualize
the original Taxi problem into a graph representation so that we may visualize both the ground MDP and
abstract MDP in the same format, despite the unnatural appearance.

6.1.4 Minefield

Minefield is a test problem we are introducing that uses the Grid World dynamics of Russell and Norvig [30]
with slip probability of x. The reward function is such that moving up in the top row of the grid receives
1.0 reward; all other transitions receive 0.2 reward, except for transitions to a random set of κ mine-states
(which may include the top row) that receive 0 reward. We set N = 10,M = 4, ε = 0.5, κ = 5, x = 0.01.

6.1.5 Random MDP

In the Random MDP domain we consider, there are 100 states and 3 actions. For each state, each ac-
tion transitions to one of two randomly selected states with probability 0.5. The Random MDP and its
compression are visualized in Figure 4.

(a) Ground Mine-
field

(b) Abstract
Minefield

(c) Ground Random (d) Abstract Random

Figure 4: Comparison of the ground and abstract MDPs under an φ̃Q∗,ε abstraction, with ε = 0.5.
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7 Empirical Results

We ran experiments on the φ̃Q∗,ε type aggregation functions. We provide results for only φ̃Q∗,ε because, as

our proofs in Section 5 demonstrate, the other three functions are reducible to particular φ̃Q∗,ε functions.
For the purpose of illustrating what kinds of approximations are possible we built each abstraction by first
solving the MDP, then greedily aggregating ground states into abstract states that satisfied the φ̃Q∗,ε criteria.
Since this approach represents an order-dependent approximation to the maximum amount of abstraction
possible, we randomized the order in which states were considered across trials. Every ground state is equally
weighted in its abstract state.

For each domain, we report two quantities as a function of epsilon with 95% confidence bars. First, we
compare the number of states in the abstract MDP for different values of ε, shown in the left column of
Figure 5 and Figure 6. The smaller the number of abstract states, the smaller the state space of the MDP
that the agent must plan over. Second, we report the value under the abstract policy of the initial ground
state, also shown in the right column of Figure 5 and Figure 6. In the Taxi and Random domains, 200 trials
were run for each data point, whereas 20 trials were sufficient in Upworld, Minefield, and NChain.
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(c) Upworld
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(d) Upworld

Figure 5: ε vs. Num States (left) and ε vs. Abstract Policy Value (right).

Our empirical results corroborate our thesis—approximate state abstractions can decrease state space
size while retaining bounded error. In both NChain and Minefield, we observe that, as ε increases from 0,
the number of states that must be planned over is reduced, and optimal behavior is either fully maintained
(NChain) or very nearly maintained (Minefield). Similarly for Taxi, when ε is between .02 and .025, we
observe a reduction in the number of states in the abstract MDP while value is fully maintained. After .025,
increased reduction in state space size comes at a cost of value. Lastly, as ε is increased in the Random
domain, there is a smooth reduction in the number of abstract states with a corresponding cost in the value
of the derived policy. When ε = 0, there is no reduction in state space size whatsoever (the ground MDP
has 100 states), because no two states have identical optimal Q-values.

Our experimental results also highlight a noteworthy characteristic of approximate state abstraction in
goal-based MDPs. Taxi exhibits relative stability in state space size and behavior for ε up to .02, at which
point both fall off dramatically. We attribute the sudden fall off of these quantities to the goal-based nature
of the domain; once information critical for achieving optimal behavior is lost in the state aggregation,
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Figure 6: ε vs. Num States (left) and ε vs. Abstract Policy Value (right).

solving the goal—and so acquiring any reward—is impossible. Conversely, in the Random domain, a great
deal of near optimal policies are available to the agent. Thus, even as the information for optimal behavior
is lost, there are many near optimal policies available to the agent that remain available.

8 Conclusion

Approximate abstraction in MDPs offers considerable advantages over exact abstraction. First, approximate
abstraction relies on criteria that we imagine a planning or learning algorithm to be able to learn without
solving the full MDP. Second, approximate abstractions can achieve greater degrees of compression due to
their relaxed criteria of equality. Third, methods that employ approximate aggregation techniques are able to
tune the aggressiveness of abstraction all the while incurring bounded error. In this work, we proved bounds
for the value lost when behaving according to the optimal policy of the abstract MDP, and empirically
demonstrate that approximate abstractions can reduce state space size with minor loss in the quality of the
behavior. We provide a code base that provides implementations to abstract, visualize, and evaluate an
arbitrary MDP to promote further investigation into approximate abstraction.

There are many directions for future work. First, we are interested in extending the approach of Ort-
ner [27] by learning the approximate abstraction functions introduced in this paper online in the planning
or RL setting, particularly when the agent must solve a collection of related MDPs. Additionally, while
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our work presents several sufficient conditions for achieving bounded error of learned behavior with ap-
proximate abstractions, we hope to investigate what conditions are strictly necessary for an approximate
abstraction to achieve bounded error. Further, we are interested in characterizing the relationship between
temporal abstractions, such as options [33] and approximate state abstractions. Lastly, we are interested
in understanding the relationship between various approximate abstractions and the information theoretical
limitations on the degree of abstraction achievable in MDPs.
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