
Optimal sequential decision

making for complex problems

agents
Damien Ernst – University of Liège

Email: dernst@uliege.be

1

About the class

Regular lectures notes about various topics on the subject with a

great emphasis on artificial intelligence and the design of intelligent

agents.

Exercises (bring your computer) and projects to illustrate the

concepts seen during the class.

Discussing together of research papers and going through

presentations of other authors

2

Artificial autonomous intelligent agent: formal definition

An agent is anything that is capable of acting upon information it
perceives.

An intelligent agent is an agent capable of making decisions about
how it acts based on experience, that is of learning decision from
experience.

An autonomous intelligent agent is an intelligent agent that is free
to choose between different actions.

An artificial autonomous intelligent agent is anything we create that
is capable of actions based on information it perceives, its own
experience, and its own decisions about which actions to perform.

Since “artificial autonomous intelligent agent” is quite mouthful, we
follow the convention of using “intelligent agent” or “autonomous
agent” for short.

3

Application of intelligent agents

Intelligent agents are applied in variety of areas: project

management, electronic commerce, robotics, information retrieval,

military, networking, planning and scheduling, etc.

Examples:

• A web search agent that may have the goal of obtaining web site

addresses that would match the query of history made by customer.

It could operate in the background and deliver recommendations to

the customer on a weekly basis.

• A robot agent that would learn to fulfill some specific tasks

through experience such as playing soccer, cleaning, etc.

• An intelligent flight control system

• An agent for placing advertisements on the web.

• A intelligent agent for playing computer games that does rely on

some predefined strategies for playing but that would learn them by

interacting with some opponents.

4

Machine learning and reinforcement learning: definitions

Machine learning is a broad subfield of artificial intelligence is

concerned with the development of algorithms and techniques that

allow computers to ”learn”.

Reinforcement Learning (RL in short) refers to a class of problems

in machine learning which postulate an autonomous agent exploring

an environment in which the agent perceives information about its

current state and takes actions. The environment, in return,

provides a reward signal (which can be positive or negative). The

agent has as objective to maximize the (expected) cumulative

reward signal over the course of the interaction.

5

The policy of an agent determines the way the agent selects its

action based on the information it has. A policy can be either

deterministic or stochastic.

Research in reinforcement learning aims at designing policies which

lead to large (expected) cumulative reward.

Where does the intelligence come from ? The policies process in an

“intelligent way” the information to select “good actions”.

6

An RL agent interacting with its environment

7

Some generic difficulties with designing intelligent agents

• Inference problem. The environment dynamics and the mechanism

behind the reward signal are (partially) unknown. The policies need

to be able to infer from the information the agent has gathered from

interaction with the system, “good control actions”.

• Computational complexity. The policy must be able to process the

history of the observation within limited amount of computing times

and memory.

• Tradeoff between exploration and exploitation.∗ To obtain a lot of

reward, a reinforcement learning agent must prefer actions that it

has tried in the past and found to be effective in producing reward.

But to discover such actions, it has to try actions that it has not

selected before.
∗May be seen as a subproblem of the general inference problem. This problem is
often referred to in the “classical control theory” as the dual control problem.

8

The agent has to exploit what it already knows in order to obtain

reward, but it also has to explore in order to make better action

selections in the future. The dilemma is that neither exploration nor

exploitation can be pursued exclusively without failing at the task.

The agent must try a variety of actions and progressively favor those

that appear to be best. On a stochastic task, each action must be

tried many times to gain a reliable estimate its expected reward.

• Exploring safely the environment. During an exploration phase

(more generally, any phase of the agent’s interaction with its

environment), the agent must avoid reaching unacceptable states

(e.g., states that may for example endanger its own integrity). By

associating rewards of −∞ to those states, exploring safely can be

assimilated to a problem of exploration-exploitation.

• Adversarial environment. The environment may be adversarial. In

such a context, one or several other players seek to adopt strategies

that oppose the interests of the RL agent.

9

Different characterizations of RL problems

• Stochastic (e.g., xt+1 = f(xt, ut, wt) where the random disturbance

wt is drawn according to the conditional probability distribution

Pw(·|xt, ut)) versus deterministic (e.g., xt+1 = f(xt, ut))

• Partial observability versus full observability. The environment is

said to be partially (fully) observable if the signal st describes

partially (fully) the environment’s state xt at time t.

• Time-invariant (e.g., xt+1 = f(xt, ut, wt) with wt = Pw(·|xt, ut))

versus time-variant (e.g., xt+1 = f(xt, ut, wt, t)) dynamics.

• Continuous (e.g., ẋ = f(x, u, w)) versus discrete dynamics (e.g.,

xt+1 = f(xt, ut, wt)).

10

• Multi-agent framework versus single-agent framework. In a

multi-agent framework the environment may be itself composed of

(intelligent) agents. A multi-agent framework can often be

assimilated to a single-agent framework by considering that the

internal states of the other agents are unobservable variables. Game

theory and, more particularly, the theory of learning in games study

situations where various intelligent agents interact with each other.

• Finite time versus infinite time of interaction.

• Single state versus multi-state environment. In single state

environment, computation of an optimal policy for the agent is often

reduced to the computation of the maximum of a stochastic

function (e.g., find u∗ ∈ arg max
u∈U

E
w∼Pw(·|u)

[r(u,w)]).

11

• Multi-objective reinforcement learning agent (reinforcement

learning signal can be multi-dimensional) versus single-objective RL

agent.

• Risk-adverse reinforcement learning agent. The goal of the agent

is not anymore to maximize the expected cumulative reward but

maximize the lowest cumulative reward it could possibly obtain.

12

Characterization of the RL problem adopted in this class

• Dynamics of the environment:

xt+1 = f(xt, ut, wt) t = 0,1,2 . . .

where for all t, the state xt is an element of the state space X, the

action ut is an element of the action space U and the random

disturbance wt is an element of the disturbance space W .

Disturbance wt generated by the time-invariant conditional

probability distribution Pw(·|x, u).

• Reward signal:

The function r(x, u, w) is the so-called reward function supposed to

be bounded by a constant Br.

To the transition from t to t+ 1 is associated a reward signal

γtrt = γtr(xt, ut, wt) where r(x, u, w) is a reward function supposed to

be bounded by a constant Br and γ ∈ [0,1[a decay factor.

13

• Cumulative reward signal:

Let ht ∈ H be the trajectory from instant time 0 to t in the

combined state, action, reward spaces:

ht = (x0, u0, r0, x1, u1, r1, . . . , ut−1, rt−1, xt). Let π ∈ Π be a stochastic

policy such that π : H× U → [0,1] and let us denote by Jπ(x) the

expected return of a policy π (or expected cumulative reward signal)

when the system starts from x0 = x

Jπ(x) = lim
T→∞

E[
∞∑
t=0

γtr(xt, ut ∼ π(ht, .), wt)|x0 = x]

• Information available:

The agent does not know f , r and Pw. The only information it has

on thes¡e three elements is the information contained in ht.

14

Goal of reinforcement learning

• Le π∗ ∈ Π a policy such that ∀x ∈ X,

Jπ
∗
(x) = max

π∈Π
Jπ(x) (I)

Under some mild assumptions∗ on f , r and Pw, such a policy π∗

indeed exists.

• In reinforcement learning, we want to build policies π̂∗ such that
J π̂
∗

is as close as possible (according to specific metrics) to Jπ
∗
.

• If f , r and Pw were known, we could, by putting aside the difficulty
of finding in Π the policy π∗, design the optimal agent by solving the
optimal control problem (I). However, Jπ depends on f , r and Pw
which are supposed to be unknown ⇒ How can we solve this
combined inference - optimization problem ?
∗We will suppose that these mild assumptions are always satisifed afterwards.

15

Dynamic Programming (DP) theory reminder: optimality
of stationary policies

• A stationary control policy µ : X ⇒ U selects at time t the action
ut = µ(xt). Let Πµ denote the set of stationary policies.

• The expected return of a stationary policy when the system starts
from x0 = x is

Jµ(x) = lim
T→∞

E
w0,w1,...,wT

[
∞∑
t=0

γtr(xt, µ(xt), wt)|x0 = x]

• Le µ∗ be a policy such that Jµ
∗
(x) = max

µ∈Πµ
Jµ(x) everywhere on X.

It can be shown that such a policy indeed exists. We name such a
policy an optimal stationary policy.

• From classical dynamic programming theory, we know
Jµ
∗
(x) = Jπ

∗
(x) everywhere ⇒ considering only stationary policies is

not suboptimal !

16

From Dynamic Programming (DP): How to compute the
return of a stationary policy

• We define the functions JµN : X → R by the recurrence equation

J
µ
N(x) = E

w∼Pw(·|x,u)
[r(x, µ(x), w) + γJ

µ
N−1(f(x, µ(x), w))], ∀N ≥ 1

(1)

with J
µ
0 (x) ≡ 0.

• We have as result of the DP theory

lim
N→∞

‖JµN − J
µ‖∞ → 0 (2)

and

‖JµN − J
µ‖∞ ≤

γN

1− γ
Br (3)

17

DP theory reminder: QN-functions and µ∗

• We define the functions QN : X ×U → R by the recurrence equation

QN(x, u) = E
w∼Pw(·|x,u)

[r(x, u, w) + γmax
u′∈U

QN−1(f(x, u, w), u′)], ∀N ≥ 1

(4)

with Q0(x, u) ≡ 0. These QN-functions are also known as

state-action value functions.

• We denote by µ∗N : X → U the stationary policy:

µ∗N(x) ∈ arg max
u∈U

QN(x, u). (5)

• We define the Q-function as being the unique solution of the

Bellman equation:

Q(x, u) = E
w∼Pw(·|x,u)

[r(x, u, w) + γmax
u′∈U

Q(f(x, u, w), u′)]. (6)

18

We have the following results:

• Convergence in infinite norm of the sequence of functions QN to

the Q-function, i.e. lim
N→∞

‖QN −Q‖∞ → 0 (see Appendix I for the

proof)

• A control policy µ∗ is optimal if and only if

µ∗(x) ∈ arg max
u∈U

Q(x, u) (7)

We also have Jµ
∗
(x) = max

u∈U
Q(x, u), which is also called the value

function.

• The following bound on the suboptimality of µ∗N with respect to µ∗

holds: ∥∥∥Jµ∗N − Jµ∗∥∥∥
∞
≤

2γNBr
(1− γ)2

(8)

19

A pragmatic approach for designing (hopefully) good
policies π̂∗

We focus first on to the design of functions π̂∗ which realize

sequentially the following three tasks:

1. “System identification” phase. Estimation from ht of an

approximate system dynamics f̂ , an approximate probability

distribution P̂w and an approximate reward function r̂.

20

2. Resolution of the optimization problem:

Find in Πµ the policy µ̂∗ such that ∀x ∈ X, J µ̂
∗
(x) = max

µ∈Πµ
Ĵµ(x)

where Ĵ µ̂ is defined similarly as function Jµ but with f̂ , P̂w and r̂

replacing f , Pw and r, respectively.

3. Afterwards, the policy π̂ selects with a probability 1− ε(ht)
actions according to the policy µ̂∗ and with a probability 1− ε(ht) at

random. Step 3 has been introduced to address the dilemma

between exploration and exploitation.∗

∗We won’t address further the design of the ’right function’ ε : H → [0,1]. In many
applications, it is chosen equal to a small constant (say, 0.05) everywhere.

21

Some constructive algorithms for designing π̂∗ when
dealing with finite state-action spaces

• Until say otherwise, we consider the particular case of finite state

and action spaces (i.e., X × U finite).

• When X and U are finite, there exists a vast panel of

’well-working’ implementable RL algorithms.

• We focus first on approaches which solve separately Step 1. and

Step 2. and then on approaches which solve both steps together.

• The proposed algorithms infer µ̂∗ from ht. They can be adapted in

a straigthforward way to episode-based reinforcement learning where

a model of µ∗ must be inferred from several trajectories ht1, ht2, . . .,

htm with ti ∈ N0.

22

Reminder on Markov Decision Processes

• A Markov Decision Process (MDP) is defined through the

following objects: a state space X, an action space U , transition

probabilities p(x′|x, u) ∀x, x′ ∈ X, u ∈ U and a reward function r(x, u).

• p(x′|x, u) gives the probability of reaching state x′ after taking

action u while being in state x.

• We consider MDPs for which we want to find decision policies that

maximize the reward signal γtr(xt, ut) over an infinite time horizon.

• MDPs can be seen as a particular type of the discrete-time optimal

control problem introduced earlier where the system dynamics is

expressed under the form of transition probabilities and where the

reward function does not depend on the disturbance w anymore.

23

MDP structure definition from the system dynamics and
reward function

• We define∗

r(x, u) = E
w∼Pw(·|x,u)

[r(x, u, w)] ∀x ∈ X,u ∈ U (9)

p(x′|x, u) = E
w∼Pw(·|x,u)

[I{x′=f(x,u,w)}] ∀x, x′ ∈ X,u ∈ U (10)

• Equations (9) and (10) define the structure of an equivalent MDP
in the sense that the expected return of any policy applied to the
original optimal control problem is equal to its expected return for
the MDP.

• The recurrence equation defining the functions QN can be
rewritten:
QN(x, u) = r(x, u) + γ

∑
x′∈X p(x′|x, u)max

u′∈U
QN−1(x′, u′), ∀N ≥ 1 with

Q0(x, u) ≡ 0.
∗I{logical expression} = 1 if logical expression is true and 0 if logical expression is false.

24

Reminder: Random variable and strong law of large
numbers

• A random variable is not a variable but rather a function that
maps outcomes (of an experiment) to numbers. Mathematically, a
random variable is defined as a measurable function from a
probability space to some measurable space. We consider here
random variables θ defined on the probability space (Ω, P).∗

• E
P

[θ] is the mean value of the random variable θ.

• Let θ1, θ2, . . ., θ2 be n values of the random variable θ which are
drawn independently. Suppose also that E

P
[|θ|] =

∫
Ω |θ|dP is smaller

than ∞. In such a case, the strong law of large number states that:

lim
n→∞

θ1 + θ2 + . . .+ θn

n

P→ E
P

[θ] (11)

∗For the sake of simplicity, we have considered here that (Ω, P) indeed defines a
probability space which is not rigorous.

25

Step 1. Identification by learning the structure of the
equivalent MPD

• The objective is to infer some ’good approximations’ of p(x′|x, u)

and r(x, u) from:

ht = (x0, u0, r0, x1, u1, r1, . . . , ut−1, rt−1, xt)

Estimation of r(x, u):

Let A(x, u) = {k ∈ {0,1, . . . , t− 1}|(xk, uk) = (x, u)}. Let k1, k2, . . .,

k#A(x,u) denote the elements of the set.∗ The values rk1
, rk2

, . . .,

rk#A(x,u)
are #A(x, u) values of the random variable r(x, u, w) which

are drawn independently. It follows therefore naturally that to

estimate its mean value r(x, u), we can use the following unbiased

estimator:

r̂(x, u) =

∑
k∈A(x,u) rk

#A(x, u)
(12)

∗If S is a set of elements, #S denote the cardinality of S.

26

Estimation of p(x′|x, u):

The values I{x′=xk1+1}, I{x′=xk2+1}, . . ., I{x′=xk#A(x,u)+1} are #A(x, u)

values of the random variable I{x′=f(x,u,w)} which are drawn

independently. To estimate its mean value p(x′|x, u), we can use the

unbiased estimator:

p̂(x′|x, u) =

∑
k∈A(x,u) I{xk+1=x′}

#A(x, u)
(13)

27

Step 2. Computation of µ̂∗ dentification by learning the
structure of the equivalent MPD

• We compute the Q̂N-functions from the knowledge of r̂ and p̂ by

exploiting the recurrence equation:

Q̂N(x, u) = r̂(x, u) + γ
∑
x′∈X p̂(x′|x, u)max

u′∈U
QN−1(x′, u′), ∀N ≥ 1 with

Q̂0(x, u) ≡ 0 and then take

µ̂∗N = arg max
u∈U

Q̂N(x, u) ∀x ∈ X (14)

as approximation of the optimal policy, with N ’large enough’ (e.g.,

right hand side of inequality (8) drops below ε).

• One can show that if the estimated MDP structure lies in an

’ε-neighborhood’ of the true structure, then, J µ̂
∗

is in a

’O(ε)-neighborhood’ of Jµ
∗

where µ̂∗(x) = lim
N→∞

arg max
u∈U

Q̂N(x, u).

28

The case of limited computational resources

• Number of operations to estimate the MDP structure grows
linearly with t. Memory requirements needed to store ht also grow
linearly with t ⇒ an agent having limited computational resources
will face problems after certain time of interaction.

• We describe an algorithm which requires at time t a number of
operations that does not depend on t to update the MDP structure
and for which the memory requirements do not grow with t:
At time 0, set N(x, u) = 0, N(x, u, x′) = 0, R(x, u) = 0, p(x′|x, u) = 0,
∀x, x′ ∈ X and u ∈ U .
At time t 6= 0, do
1. N(xt−1, ut−1)← N(xt−1, ut−1) + 1
2. N(xt−1, ut−1, xt)← N(xt−1, ut−1, xt) + 1
3. R(xt−1, ut−1)← R(xt−1, ut−1) + rt

4. r(xt−1, ut−1)← R(xt−1,ut−1)
N(xt−1,ut−1)

5. p(x|xt−1, ut−1)← N(xt−1,ut−1,x)
N(xt,ut)

∀x ∈ X

29

Merging Step 1. and 2. to learn directly the Q-function:
the Q-learning algorithm

The Q-learning algorithms is an algorithm that infers directly from

ht = (x0, u0, r0, x1, u1, r1, . . . , ut−1, rt−1, xt)

an approximate value of the Q-function, without identifying the

structure of a Markov Decision Process.

The algorithm can be described by the following steps:

1. Initialisation of Q̂(x, u) to 0 everywhere. Set k = 0.

2. Q̂(xk, uk)← (1− αk)Q̂(xk, uk) + αk(rk + γmax
u∈U

Q̂k(xk+1, u))

3. k ← k + 1. If k = t, return Q̂ and stop. Otherwise, go back to 2.

30

Q-learning: some remarks

• Iteration 2. can be rewritten as Q̂(xk, uk)← Q̂(xk, uk) + αδ(xk, ul)

where the term:

δ(xk, uk) = rk + γmax
u∈U

Q̂(xk+1, u)− Q̂(xk, uk), (15)

called the temporal difference.

• Learning ratio αk: The learning ratio αk is often chosen constant

with k and equal to a small value (e.g., αk = 0.05, ∀k).

• Consistency of the Q-learning algorithm: Under some particular

conditions on the way αk decreases to zero (lim
t→∞

∑t−1
k=0αk →∞ and

lim
t→∞

∑t−1
k=0α

2
k <∞) and the history ht (when t→∞, every

state-action pair needs to be visited an infinite number of times),

Q̂→ Q when t→∞.

31

• Experience replay: At each iteration, the Q-learning algorihtm uses

a sample lk = (xk, uk, rk, xk+1) to update the function Q̂. If rather

that to use the finite sequence of sample l0, l2, . . ., lt−1, we use the

infinite size sequence li1, li2, . . . to update in a similar way Q̂, where

the ij are i.i.d. with uniform distribution on {0,2, . . . , t− 1}, then Q̂

converges to the approximate Q-function computed from the

estimated equivalent MDP structure.

Inferring µ̂∗ from ht when dealing with very large or
infinite state-action spaces

• Up to now, we have considered problems having discrete (and not
too large) state and action spaces ⇒ µ̂∗ and the Q̂N-functions could
be represented in a tabular form.

• We consider now the case of very large or infinite state-action
spaces: functions approximators need to be used to represent µ̂∗ and
the Q̂N-functions.

• These function approximators need to be used in a way that there
are able to ’well generalize’ over the whole state-action space the
information contained in ht.

• There is a vast literature on function approximators in
reinforcement learning. We focus first on one algorithm named
’fitted Q iteration’ which computes the functions Q̂N from ht by
solving a sequence of batch mode supervised learning problems.

32

Reminder: Batch mode supervised learning

• A batch mode Supervised Learning (SL) algorithm infers from a
set of input-output (input = information state); (output = class
label, real number, graph, etc) a model which explains “at best”
these input-output pairs.

• A loose formalisation of the SL problem: Let I be the input space,
O the output space, Ξ the disturbance space. Let g : I ×Ξ→ O. Let
Pξ(·|i) a conditional probability distribution over the disturbance
space.

We assume that we have a training set T S = {(il, ol)}#T Sl=1 such that
ol has been generated from il by the following mechanism: draw
ξ ∈ Ξ according to Pξ(·|il) and then set ol = g(il, ξ).

From the sole knowledge of T S, supervised learning aims at finding
a function ĝ : I → O which is a ’good approximation’ of the function
g(i) = E

ξ∼Pξ(·)
[g(i, ξ)]

33

• Typical supervised learning methods are: kernel-based methods,

(deep) neural networks, tree-based methods.

• Supervised learning highly successful: state-of-the art SL

algorithms have been successfully applied to problems where the

input state was composed thousands of components.

34

The fitted Q iteration algorithm

• Fitted Q iteration computes from ht the functions Q̂1, Q̂2, . . ., Q̂N ,

approximations of Q1, Q2, . . ., QN . At step N > 1, the algorithm

uses the function Q̂N−1 together with ht to compute a new training

set from which a SL algorithm outputs Q̂N . More precisely, this

iterative algorithm works as follows:

First iteration: the algorithm determines a model Q̂1 of

Q1(x, u) = E
w∼Pw(·|x,u)

[r(x, u, w)] by running a SL algorithms on the

training set:

T S = {((xk, uk), rk)}t−1
k=0 (16)

Motivation: One can assimilate X × U to I, R to O, W to Ξ,

Pw(·|x, u) to Pξ(·|x, u), r(x, u, w) to g(i, ξ) and Q1(x, u) to g. From

there, we can observe that a SL algorithm applied to the training set

described by equation (16) will produce a model of Q1.

35

Iteration N > 1: the algorithm outputs a model Q̂N of

QN(x, u) = E
w∼Pw(·|x,u)

[r(x, u, w) + γmax
u′∈U

QN−1(f(x, u, w), u′)] by

running a SL algorithms on the training set:

T S = {((xk, uk), rk + γmax
u′∈U

Q̂N−1(xk+1, u
′)}t−1

k=0

Motivation: One can reasonably suppose that Q̂N−1 is a a

sufficiently good approximation of QN−1 to be consider to be equal

to this latter function. Assimilate X × U to I, R to O, W to Ξ,

Pw(·|x, u) to Pξ(·|x, u), r(x, u, w) to g(i, ξ) and QN(x, u) to g. From

there, we observe that a SL algorithm applied to the training set

described by equation (17) will produce a model of QN .

• The algorithm stops when N is ’large enough’ and

µ̂∗N(x) ∈ arg max
u∈U

Q̂N(x, u) is taken as approximation of µ∗(x).

36

The fitted Q iteration algorithm: some remarks

• Performances of the algorithm depends on the supervised learning

(SL) method chosen.

• Excellent performances have been observed when combined with

supervised learning methods based on ensemble of regression trees.

• Fitted Q iteration algorithm can be used with any set of one-step

system transitions (xt, ut, rt, xt+1) where each one-step system

transition gives information about: a state, the action taken while

being in this state, the reward signal observed and the next state

reached.

• Consistency, that is convergence towards an optimal solution when

the number of one-step system transitions tends to infinity, can be

ensured under appropriate assumptions on the SL method, the

sampling process, the system dynamics and the reward function.

37

Computation of µ̂∗: from an inference problem to a
problem of computational complexity

• When having at one’s disposal only a few one-step system

transitions, the main problem is a problem of inference.

• Computational complexity of the fitted Q iteration algorithm grows

with the number M of one-step system transitions (xk, uk, rk, xk+1)

(e.g., it grows as M logM when coupled with tree-based methods).

• Above a certain number of one-step system transitions, a problem

of computational complexity appears.

• Should we rely on algorithms having less inference capabilities than

the ’fitted Q iteration algorithm’ but which are also less

computationally demanding to mitigate this problem of

computational complexity ⇒ Open research question.

38

• There is a serious problem plaguing every reinforcement learning

algorithm known as the curse of dimensionality∗: whatever the

mechanism behind the generation of the trajectories and without any

restrictive assumptions on f(x, u, w), r(x, u, w), X and U , the number

of computer operations required to determine (close-to-) optimal

policies tends to grow exponentially with the dimensionality of X×U .

• This exponentional growth makes these techniques rapidly

computationally impractical when the size of the state-action space

increases.

• Many researchers in reinforcement learning/dynamic

programming/optimal control theory focus their effort on designing

algorithms able to break this curse of dimensionality. Can deep

neural networks give a hope?

∗A term introduced by Richard Bellman (the founder of the DP theory) in the fifties.

39

Q-learning with parametric function approximators

Let us extend the Q-learning algorithm to the case where a

parametric Q-function of the form Q̃(x, u, a) is used:

1. Equation (15) provides us with a desired update for Q̃(xt, ut, a),

here: δ(xt, ut) = rt + γmax
u∈U

Q̂(xt+1, u, a)− Q̂(xt, ut, a), after observing

(xt, ut, rt, xt+1).

2. It follows the following change in parameters:

a← a+ αδ(xt, ut)
∂Q̃(xt, ut, a)

∂a
. (17)

40

Appendix : Algorithmic models for computing the fixed
point of a contraction mapping and their application to
reinforcement learning.

41

Contraction mapping

Let B(E) be the set of all bounded real-valued functions defined on

an arbitrary set E. With every function R : E → R that belongs to

B(E), we associate the scalar :

‖R‖∞ = sup
e∈E
|R(e)|. (18)

A mapping G : B(E)→ B(E) is said to be a contraction mapping if

there exists a scalar ρ < 1 such that :

‖GR−GR′‖∞ ≤ ρ‖R−R′‖∞ ∀R,R′ ∈ B(E). (19)

42

Fixed point

R∗ ∈ B(E) is said to be a fixed point of a mapping G : B(E)→ B(E)

if :

GR∗ = R∗. (20)

If G : B(E)→ B(E) is a contraction mapping then there exists a

unique fixed point of G. Furthermore if R ∈ B(E), then

lim
k→∞

‖GkR−R∗‖∞ = 0. (21)

From now on, we assume that:

1. E is finite and composed of n elements

2. G : B(E)→ B(E) is a contraction mapping whose fixed point is

denoted by R∗

3. R ∈ B(E).

43

Algorithmic models for computing a fixed point

All elements of R are refreshed: Suppose have the algorithm that
updates at stage k (k ≥ 0) R as follows :

R← GR. (22)

The value of R computed by this algorithm converges to the fixed
point R∗ of G. This is an immediate consequence of equation (21).

One element of R is refreshed: Suppose we have the algorithm that
selects at each stage k (k ≥ 0) an element e ∈ E and updates R(e)
as follows :

R(e)← (GR)(e) (23)

leaving the other components of R unchanged. If each element e of
E is selected an infinite number of times then the value of R
computed by this algorithm converges to the fixed point R∗.

44

One element of R is refreshed and noise introduction: Let η ∈ R be a

noise factor and α ∈ R. Suppose we have the algorithm that selects

at stage k (k ≥ 0) an element e ∈ E and updates R(e) according to :

R(e)← (1− α)R(e) + α((GR)(e) + η) (24)

leaving the other components of R unchanged.

We denote by ek the element of E selected at stage k, by ηk the

noise value at stage k and by Rk the value of R at stage k and by αk
the value of α at stage k. In order to ease further notations we set

αk(e) = αk if e = ek and αk(e) = 0 otherwise.

With this notation equation (24) can be rewritten equivalently as

follows :

Rk+1(ek) = (1− αk)Rk(ek) + αk((GRk)(ek) + ηk). (25)

45

We define the history Fk of the algorithm at stage k as being :

Fk = {R0, . . . , Rk, e0, . . . , ek, α0, . . . , αk, η0, . . . , ηk−1}. (26)

We assume moreover that the following conditions are satisfied:

1. For every k, we have

E[ηk|Fk] = 0. (27)

2. There exist two constants A and B such that ∀k

E[η2
k |Fk] ≤ A+B‖Rk‖2∞. (28)

3. The αk(e) are nonnegative and satisfy

∞∑
k=0

αk(e) =∞,
∞∑
k=0

α2
k(e) <∞. (29)

Then the algorithm converges with probability 1 to R∗.

46

The Q-function as a fixed point of a contraction mapping

We define the mapping H: B(X × U)→ B(X × U) such that

(HK)(x, u) = E
w∼Pw(·|x,u)

[r(x, u, w) + γmax
u′∈U

K(f(x, u, w), u′)] (30)

∀(x, u) ∈ X × U .

• The recurrence equation (4) for computing the QN-functions can

be rewritten QN = HQN−1 ∀N > 1, with Q0(x, u) ≡ 0.

• We prove afterwards that H is a contraction mapping. As

immediate consequence, we have, by virtue of the properties

algorithmic model (22), that the sequence of QN-functions

converges to the unique solution of the Bellman equation (6) which

can be rewritten: Q = HQ. Afterwards, we proof, by using the

properties of the algorithmic model (25), the convergence of the

Q-learning algorithm.

47

H is a contraction mapping

This H mapping is a contraction mapping. Indeed, we have for any

functions K,K ∈ B(X × U) :∗

‖HK −HK‖∞ = γ max
(x,u)∈X×U

| E
w∼Pw(·|x,u)

[max
u′∈U

K(f(x, u, w), u′)−

max
u′∈U

K(f(x, u, w), u′)]|

≤ γ max
(x,u)∈X×U

| E
w∼Pw(·|x,u)

[max
u′∈U
|K(f(x, u, w), u′)−

K(f(x, u, w), u′)|]|
≤ γmax

x∈X
max
u∈U
|K(x, u)−K(x, u)|

= γ‖K −K‖∞

∗We do as additional assumption here that the rewards are stricly positive.

48

Q-learning convergence proof

The Q-learning algorithm updates Q at stage k in the following way∗

Qk+1(xk, uk) = (1− αk)Qk(xk, uk) + αk(r(xk, uk, wk) + (31)

γmax
u∈U

Qk(f(xk, uk, wk), u)), (32)

Qk representing the estimate of the Q-function at stage k. wk is

drawn independently according to Pw(·|xk, uk).

By using the H mapping definition (equation (30)), equation (32)

can be rewritten as follows :

Qk+1(xk, uk) = (1− αk)Qk(xk, uk) + αk((HQk)(xk, uk) + ηk) (33)

∗The element (xk, uk, rk, xk+1) used to refresh the Q-function at iteration k of the
Q-learning algorithm is “replaced” here by (xk, uk, r(xk, uk, wk), f(xk, uk, wk)).

49

with

ηk = r(xk, uk, wk) + γmax
u∈U

Qk(f(xk, uk, wk), u)− (HQk)(xk, uk)

= r(xk, uk, wk) + γmax
u∈U

Qk(f(xk, uk, wk), u)−

E
w∼Pw(·|x,u)

[r(xk, uk, w) + γmax
u∈U

Qk(f(xk, uk, w), u)]

which has exactly the same form as equation (25) (Qk corresponding

to Rk, H to G, (xk, uk) to ek and X × U to E).

We know that H is a contraction mapping. If the αk(xk, uk) terms

satisfy expression (29), we still have to verify that ηk satisfies

expressions (27) and (28), where

Fk = {Q0, . . . , Qk, (x0, u0), . . . , (xk, uk), α0, . . . , αk, η0, . . . , ηk−1}, (34)

in order to ensure the convergence of the Q-learning algorithm.

We have :

E[ηk|Fk] = E
wk∼Pw(·|xk,uk)

[r(xk, uk, wk) + γmax
u∈U

Qk(f(xk, uk, wk), u)−

E
w∼Pw(·|xk,uk)

[r(xk, uk, w) + γmax
u∈U

Qk(f(xk, uk, w), u)]|Fk]

= 0

and expression (27) is indeed satisfied.

50

In order to prove that expression (28) is satisfied, one can first note

that :

|ηk| ≤ 2Br + 2γ max
(x,u)∈X×U

Qk(x, u) (35)

where Br is the bound on the rewards. Therefore we have :

η2
k ≤ 4B2

r + 4γ2(max
(x,u)∈X×U

Qk(x, u))2 + 8Brγ max
(x,u)∈X×U

Qk(x, u) (36)

By noting that

8Brγ max
(x,u)∈X×U

Qk(x, u) < 8Brγ + 8Brγ(max
(x,u)∈X×U

Qk(x, u))2 (37)

and by choosing A = 8Brγ + 4B2
r and B = 8Brγ + 4γ2 we can write

η2
k ≤ A+B‖Qk‖2∞ (38)

and expression (28) is satisfied. QED

51

Additional readings

Lucian Busoniu, Robert Babuska, Bart De Schutter, and Damien Ernst.
Reinforcement learning and dynamic programming using function approximators.
CRC Press, April 2010. (Available at:
https://orbi.ulg.ac.be/bitstream/2268/27963/1/book-FA-RL-DP.pdf

Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction.
Second edition, in progress. Available at:
http://ufal.mff.cuni.cz/ straka/courses/npfl114/2016/sutton-
bookdraft2016sep.pdf)

Dimitri P. Bertsekas. Dynamic Programming and Optimal Control. Volume I (last
edition: 2017) and Volume II (last edition: 2012. Material available at
http://ufal.mff.cuni.cz/ straka/courses/npfl114/2016/sutton-
bookdraft2016sep.pdf

Csaba Szepezvari. Algorithms for Reinforcement Learning. Synthesis Lectures on
Artificial Intelligence and Machine Learning. June 2009. Available at
http://jmlr.csail.mit.edu/papers/v6/ernst05a.html)

52

