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What is currently happening?

Elements of fear for the big utilities: 

Cheap cost of distributed generation 

Falling cost of batteries 

Increase of energy efficiency 

Electric cars + possible ‘uberisation’ of the grid 

Community based energy solutions:

Small consumers, producers, prosumers sharing resources for their provision of energy 

Made possible by exploiting the above-mentioned « elements of fear »  

Rather than to oppose these community-based energy solutions, utilities should tap into the new 
business opportunities they represent



Energy prosumer communities

In this course, we will focus on two extreme types of energy communities, as 
well as on their potential interactions: 

A first community of houses connected to the same low-voltage feeder, sharing 
production and/or storage capacities: the local energy community 

A second community of electricity sellers, and electricity buyers, in particular 
using electric vehicles: the mobile energy community
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The microgrids case

A house, some PVs, and a little storage. 

There is local electricity production, and a local consumption. 

There is also the possibility to locally store energy. 

Questions :

- Is it possible to become self-sufficient ? 

- What is the “best” way to size the installation ? 



The microgrids case
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FULLY OFF-GRID MICROGRID

For each storage systems included in the microgrid :

State system variable Decision making process

Challenge : Real-time balancing of several storage systems under uncertainties.

DATA

• Annual solar irradiance in Belgium ;

• Daily consumption pattern (18 kWh) ;

• Microgrid size.

INCENTIVES

• Load (e.g. house) proximity ;

• Drop in the cost of PV panels.

LINEAR DYNAMICS

Variables

8t 2 {1 . . . T},� 2 ⌃, T 2 N :

• a�,+t , a�,�t ! Storage system � actions ;
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Power cut. dt = prodt � const is the net de-
mand. ⌘� is storage system � efficiency.
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where

• I0 ! Initial investment cost ;

• k t F
 
t ! Cost of consumption not met for

load  2  at time t 2 {1 . . . T}.

Linear programming

Minimization of objective function with
contraints related to the dynamics !

Optimization of planning strategies given a
complete scenario.

GOAL

Automated extraction of smart online planning
agents using imitative learning.

IMITATIVE LEARNING

Principle : learning near-optimal behavior with
optimal sequences of actions.

• Compute optimal sequences of actions from
production and consumption scenarios (lin-
ear programming) ;

• Build smart online planning agent with op-
timal sequences (machine learning).

FUTURE WORK

• Benchmarking of others machine learning
structures/algorithms ;

• Testing on others microgrids (e.g. con-
nected on main network) ;

• Transfer learning (i.e. adaptation of an ex-
isting strategy for new microgrids).

RESULTS

Discharge/recharge storage systems in
increasing order of efficiency.

LEC (e/ kWh) :

Expert Agent Novice
0.32 0.42 0.6

LEARNING STRUCTURE

Forest of regression binary trees.



Operating storage devices in microgrids

The context: imagine a microgrid (MG) featuring photovoltaic (PV) panels, with 
both short and long terme storage devices.


The problem: how to optimally active the storage devices so that to     
minimise the operating costs of the MG?

• �t [kW] 2 R+ is the electricity generated locally by the photovoltaic installation, we have:

�t = ⌘
PV

t
x
PV

t
it ; (33)

• dt [kW] 2 R denotes the net electricity demand, which is the difference between the local consump-
tion and the local production of electricity:

dt = ct � �t ; (34)

• �t [kW] 2 R represents the power balance within the microgrid, taking into account the contribu-
tions of the demand and of the storage devices:

�t = �p
B

t
� p

H2
t

� dt . (35)

These quantities are illustrated in a diagram of the system in Figure (1), which allows for a more intuitive
understanding of the power flows within the microgrid.
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Figure 1: Schema of the microgrid featuring PV panels associated with a battery and a hydrogen storage
device.

At each time step t 2 T , a positive power balance �t reflects a surplus of production within the
microgrid, while it is negative when the power demand is not met. As the law of conservation of energy
requires that the net power within the microgrid must be null, compensation measures are required when
�t differs from zero. In the case of a connected microgrid, this corresponds to a power exchange with
the grid. In the case of an off-grid system, a production curtailment or a load shedding is required. The
instantaneous operational revenues we consider correspond to the financial impact of a surplus or lack
of production. The reward function ⇢t is a linear function of the power balance �t and, because the
price � at which the energy surplus can be sold to the grid usually differs from the retail price k to buy
electricity from the grid, the definition of the reward function at time step t 2 T depends of the sign of
�t:

⇢t =

(
� �t�t if �t � 0 ,

k �t�t otherwise.
(36)

Using Equations (33), (34), and (35), the reward function can be expressed as a function of the system
variables:
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(37)

3 Optimisation

In this section, we detail how to implement the LEC version of Problems (1), (2), and (3), to obtain
an optimal solution using mathematical programming techniques. Even though the formalization of the
problem includes non-linear relations (e.g. Equations (22), (23), and (37)), we show how to obtain a linear
program by using auxiliary variables. The presented approach assumes that the following conditions are
met:
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94 microgrids using both long-term and short-term storages

(a) Total energy produced per month

(b) Example of production in winter

(c) Example of production in summer

Figure 5.4: Measurements of PV panels production for a residential cus-
tomer located in Belgium.
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Figure 5.4: Measurements of PV panels production for a residential cus-
tomer located in Belgium.

100 deep rl solutions for energy microgrids management

6.2 control problem of the microgrid management

We consider the case of a residential electricity prosumer (i.e. both
consumer and producer) located in Belgium and operating an off-
grid microgrid. The microgrid model and the microgrid parameters
considered in this chapter are the same as the ones provided in
Chapter 5, except for a few elements explicitly stated hereafter.

First, the consumption profile keeps an average consumption of
18kWh/day as in Chapter 5, but the profile is varied randomly by a
factor of ±25% for each day (see Figure 6.1). This slightly different
setting is chosen to demonstrate, without ambiguity, that the DQN
algorithm is able to handle uncertainty coming from the consumption
profile. Concerning the production profile, it is directly taken from
Chapter 5, which already presents strong variations.

Figure 6.1: Representative residential consumption profile.

Second, a careful observation of the problem allows removing one
degree of freedom in the action space (without introducing bias), thus
simplifying the control problem. The only possible action considered
in the control scheme relates to how the hydrogen storage device
is controlled (pH2

t
), while the control of the battery (pB

t
) follows

deterministically by avoiding any direct value of loss load (except
when the battery is at its lowest allowed level) and by avoiding
wasting energy (except when the battery is full). As illustrated in
Figure 6.2, we consider three discretized actions at 2 A for the
hydrogen storage device: (i) charge it at maximum rate, (ii) keep
it idle or (iii) discharge it at maximum rate. This discretization is
sufficiently flexible and without any major drawbacks since the time
steps are sufficiently small (�t = 1h).

Third, the instantaneous reward signal rt is obtained by adding the
revenues generated by the hydrogen production rH2 and the penalties
r- due to the value of loss load:

rt = r(at,dt) = rH2(at) + r-(at,dt), (6.1)



Operating storage devices in microgrids

Minimize LEC =
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• The constraints on the control actions 17 appear in equations 32b, 32c, 32d, 32e, 32f and 32g.

• Equation 22 and 23 are rewritten as equations 32h and 32i.

• Finally, to handle the conditions 30, we introduce Ft in equations 32j and 32k so that Ft is forced
to be lower than both E

l

t
and 0.

• The LEC can then be written as equation 32a.

Let us now see how the typical operation of the device will happen in the case with fixed installation’s
parameters. Figure 2 shows the operation of a battery with a capacity of 3kWh, and a hydrogen storage
device with an instantaneous power available of 1kW. The battery handles all short fluctuations while
the hydrogen storage device stores the excess of energy for use on the longer term.

(a) Optimal operation of the storage devices (b) Demand (negative demand represents a production

higher than the consumption)

Figure 2: Illustration of the optimal operation of the device (a) for a given fictitious demand scenario
(b)
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Operating storage devices in microgrids

4.4.1 The Spanish case

We first considered a residential consumer of electricity located in Spain. For different values of costs k

endured per kWh not supplied within the microgrid, we performed the optimal sizing and the robust-type
optimization schemes described above. We reported the obtained LEC in Figure (6). We observed the
following : (i) for a retail price of 0.2e/kWh, the residential consumer of electricity benefits from a LEC
of slightly more than 0.10e/kWh; (ii) in the fully off-grid case, the microgrid is still more profitable
than buying electricity at all times from the utility grid for all configurations as long as k is lower than
approximately 3e/kWh (i.e. with a value of loss load smaller than 3 e/kWh, it is always preferable to
go fully off-grid than buying all the electricity from the grid); (iii) due to the relatively low inter-seasonal
fluctuations (compared to Belgium for instance (see later)) investing in a hydrogen storage system is not
actually profitable for low values of k.

Figure 6: LEC (r = 2%) in Spain over 20 years for different investment strategy as a function of the cost
endured per kWh not supplied within the microgrid.

4.4.2 The Belgian case

We then considered a residential consumer of electricity located in Belgium and we reported the obtained
LEC for different values of k. As can be seen from Figure (7), a residential consumer of electricity in
Belgium has incentives to invest in his own microgrid system (at least PV panels) since the obtained LEC
while operating in parallel with the main utility grid at a retail price of 0.2e/kWh gives the residential
consumer of electricity a lower electricity price than buying it from the grid at all times. With the
current state of the technology however, it is not yet profitable for a residential consumer of electricity
in Belgium to go fully off-grid since they would then suffer from a higher overall cost. Contrary to the
results observed for Spain, in Belgium there is an important potential gain in combining both short-
term and long-term energy storage devices. This is due to the critical inter-seasonal fluctuations of PV
electrical production in Belgium.

We also investigate how the LEC evolves as a function of the price decrease of the elements in the
microgrid. Figure (8) shows the reported LEC as a function of a uniform price decrease of the elements
of the microgrid while assuming a value of loss load of 0.2e/kWh and a robust sizing. It is shown that
when the prices of constitutive elements of the microgrid are less than half of those given in Tables 1
to 3, the business case for a fully off-grid microgrid in Belgium may actually become cost-effective.

5 Conclusion

This chapter has proposed a novel formulation of electrical microgrids featuring PV, long-term (hydro-
gen) and short-term (batteries) storage devices. Using linear programming we managed to set up an
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Figure 7: LEC (r=2%) in Belgium over 20 years for different investment strategy as a function of the
cost endured per kWh not supplied within the microgrid.

Figure 8: LEC (r=2%) in Belgium over 20 years for a value of loss load of 2e/kWh as a function of a
uniform price decrease for all the constitutive elements of the microgrid.

algorithm for optimally sizing and operating microgrids under some (potentially robust) hypotheses on
the surrounding environment. The approach has been illustrated in the context of Belgium and Spain,
for which we evaluate the values of the LEC and compare it with the cost of electricity from traditional
electricity networks.

Future works will include relaxing the assumption that the future is deterministically known when
computing the optimal operation. In particular, we plan to investigate how to incorporate stochastic
weather forecasts in the optimization of the microgrid operation.

Acknowledgments The authors thanks the Walloon Region who has funded this research in the
context of the BATWAL project. Raphael Fonteneau is a postdoctoral fellow of the F.R.S.-FNRS.

15

Spain Belgium



Operating storage devices in microgrids

Figure 7: LEC (r=2%) in Belgium over 20 years for different investment strategy as a function of the
cost endured per kWh not supplied within the microgrid.

Figure 8: LEC (r=2%) in Belgium over 20 years for a value of loss load of 2e/kWh as a function of a
uniform price decrease for all the constitutive elements of the microgrid.

algorithm for optimally sizing and operating microgrids under some (potentially robust) hypotheses on
the surrounding environment. The approach has been illustrated in the context of Belgium and Spain,
for which we evaluate the values of the LEC and compare it with the cost of electricity from traditional
electricity networks.

Future works will include relaxing the assumption that the future is deterministically known when
computing the optimal operation. In particular, we plan to investigate how to incorporate stochastic
weather forecasts in the optimization of the microgrid operation.
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Using Reinforcement Learning…

4.3 Training
By starting with a random Q-network, we perform at each time step the update given in Eq. 1
and, in the meantime, we fill up a replay memory with all observations, actions and rewards
using an agent that follows an ✏-greedy policy s.t. the policy ⇡(s) = maxa2AQ(s, a; ✓k)
is selected with a probability 1 � ✏, and a random action (with uniform probability over
actions) is selected with probability ✏. We use a decreasing value of ✏ over time. During the
validation and test phases, the policy ⇡(s) = maxa2AQ(s, a; ✓k) is applied (with ✏ = 0). As
discussed in François-Lavet et al. (2015), we use an increasing discount factor along with a
decreasing learning rate through the learning epochs so as to enhance learning performance.

4.4 Results and discussions
We consider a robust microgrid sizing provided by François-Lavet et al. (2016). The size
of the battery is xB = 15kWh, the instantaneous power of the hydrogen storage is xH2 =
1.1kW and the peak power generation of the PV installation is xPV = 12kWp. We first run
the base case with minimal information available. The selected policy is based on the best
validation score. The typical behaviour of the policy is illustrated in Figure 2 (test data).
Since the microgrid has no information about the future, it builds up (during the night)
a sufficient reserve in the short-term storage device so as to be able to face the next day
consumption without suffering too much loss load. It also avoids wasting energy (when the
short term storage is full) by storing in the long-term storage device whenever possible.

(a) Typical policy during summer (b) Typical policy during winter

Figure 2: Computed policy with minimal information available to the agent. H action = 0
means discharging the hydrogen reserve at maximum rate; H action = 1 means
doing nothing with the hydrogen reserve; H action = 2 means building up the
hydrogen reserve at maximum rate.

We now investigate the effect of providing additional information to the agent. We report
in Figure 3(a) the operational revenue on the test data M

⇡q
y for the three cases as a function

of a unique percentage of the initial sizings xB, xH2 , xPV . For each configuration, we run the
process five times with different seeds. We first observe that the dispersion in the revenues
is higher for small microgrids: the operation being more challenging in such cases, small
differences in the decision process have a larger impact. Second, it can be observed that any
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useful information added as input to the agent helps improving the policy, such as accurate
information about the production profile. Similarly, additional data on the consumption
profile would help to further improve the policy ⇡q. This data could for instance take the
form of the current week day (1 to 7) in order to model the case where a residential customer
would consume, on average, more energy during some particular days of the week.

We can also plot the LEC obtained as a function of a unique percentage of the initial
sizings xB, xH2 , xPV . The LEC is calculated with the assumption that the operational
revenue obtained for the test data is the same over the lifetime of the microgrid.

(a) Operational revenue (b) LEC

Figure 3: Operational revenue and LEC (test data) function of the sizings of the microgrid.
The optimal deterministic operation is the one obtained by solving the problem
with the assumption of perfect knowledge of the whole future with the method
described in François-Lavet et al. (2016). The Naive policy operation is the one
obtained by optimizing the thresholds at which to discharge and charge the hy-
drogen storage based on the level of energy in the battery (through grid search on
rollouts in the validation environment).

5. Conclusion
This paper has introduced a deep reinforcement learning architecture for addressing the
problem of operating an electricity microgrid in a stochastic environment. The proposed
approach is original in the overall validation process. Experimental results illustrate the
fact that the NN representation of the value function efficiently generalizes the policy to
situations corresponding to unseen configurations of electricity demand and solar irradiance.
Future works include the extension of the microgrid simulator, in particular by increasing
the diversity of electricity production and storage technologies. It would also be of interest
to investigate the case where several microgrids interact with each other and with the main
utility grid.

Data and source code
PV production and consumption profiles as well as main microgrid parameters can be found
at http://deer.readthedocs.io/en/master/user/environments/two_storages.html.
Source code is available at https://github.com/VinF/deer.
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From microgrids to local energy community

We consider a set of houses with PV panels (+ eventually batteries) sharing their 
resources in order to attain « community objectives » 

At every time-step, decisions can be taken:  
Curtailing the PV production 
Charging / discharging the battery  
Managing the demand 

The community needs to defined a community objective: 
Maximising the PV production,  
Minimising the cost of electricity,  
Minimising losses… 

A community should also discuss how benefits should be shared, and also 
propose incentives to attract new members

electrical parts of the network, di↵erent levels of modeling are possible. Given the
span of this master thesis, we only consider the low voltage part of the distribution
network, namely a feeder starting from the MV/LV transformer. Moreover, we will
adopt for transformers and lines of the low-voltage grid a level of modeling usually
considered in transmission network for studying voltage problems. This level of
modeling assumes that the three-phases are balanced. As a result, only one line
is required for modeling the di↵erent phases. Note that this assumption should
probably be revised in future work. Indeed, low-voltage distribution networks are
known for not being well-balanced, since residential loads are usually single phase.
Houses are often also only connected to a single phase, as mentioned in the Electric
Power Distribution Handbook [16]. Furthermore, PV panels under 5 kVA are often
also only connected to a single phase [9]. Figure 2.1 gives a simple representation of
the network studied in this master thesis. Note that we will assume throughout this
manuscript that the thermal limit of this network can never be reached.

In the subsequent subsection, we detail all the other modeling assumptions.

1 2

1

3

2

4

3

5

4

6

5

7

Figure 2.1: Graphic representation of the test network.

2.1.1 Equivalent for the higher voltage system

The voltages and the currents in the low-voltage grid obviously depend on the char-
acteristics of the power system as seen from the MV/LV junction. We model the
power system that comes atop of the MV/LV transformer and the transformer itself
by a Thévenin equivalent, that is, our test network is connected to an infinite bus —
whose voltage is the one from the Thévenin equivalent V1 — trough an impedance
Z12. An infinite bus is a node whose voltage magnitude stays constant. Additionally,
this voltage is assumed to always oscillate at the nominal frequency. When doing
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Modelling a local energy community

Electrical model of the network 

8j 2 {1, . . . , N}, 8t 2 {0, T � 1},
��QL

j,t

��  QL
j,max

Also, by convention, we assume that the active power injected into the network needs to be greater
than 0, i.e.:

8j 2 {1, . . . , N}, 8t 2 {0, T � 1}, PL
j,t � 0.

• A quarter-hourly electricity production from a battery; the battery is also modeled using two time
series, corresponding to the active and the reactive power that are injected into the network at time
t 2 {0, . . . , T � 1}. We denote by PB

j,t and QB
j,t the active and reactive power it reinjects into the

network at time t. We assume that these different values are bounded.

8j 2 {1, . . . , N}, 8t 2 {0, T � 1},�PB
j,char  PB

j,t  PB
j,dis.

8j 2 {1, . . . , N}, 8t 2 {0, T � 1},
��QB

j,t

��  QB
j,dis.

Also, by convention, we assume that the active power injected into the network needs to be greater
than 0, i.e.:

8j 2 {1, . . . , N}, PB
j,dis � 0, PB

j,char � 0.

Intuitively, PB
j,char corresponds to an upper bound on the charging power, and PB

j,char corresponds
to an upper-bound on the discharging power. In addition to this, each battery is characterized by a
capacity parameter CB

j 2 R [kWh].

We assume that each house is connected to the low-voltage feeder. at node number j.

VTh
1

Infinite bus

YTh

0

Y01

1

PL
1,t, QL

1,t

PPV
1,t , QPV

1,t

PB
1,t, QB

1,t

Y12

2

PL
2,t, QL

2,t

PPV
2,t , QPV

2,t

PB
2,t, QB

2,t

Y23

3

PL
3 , QL

3,t

PPV
3,t , QPV

3,t

PB
3,t, QB

3,t

Figure 2.2: Electrical model of the network.

Other Assumptions related to the PV installation. A PV installation is made of two key elements: PV
panels that generate DC current and a power converter that transforms this DC current into an AC one,
namely an inverter. Note that we assume here that the electrical impedance of the cable connecting the
power converter to the feeder of the low-voltage network is equal to zero.
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Modelling a local energy community

N prosumers dynamically interacting with each other over a time 
horizon T 
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Email: frederic.olivier@ulg.ac.be

Damien Ernst
Department of Electrical Engineering

and Computer Science
University of Liège, Belgium
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Abstract—This paper is dedicated to electricity prosumer
communities, which are group of people producing, sharing and
consuming electricity locally. This paper focuses on building a
rigorous mathematical framework in order to formalise sequen-
tial decision marking problems that may soon be encountered
within electricity prosumer communities. After introducing our
formalism, we propose a set of optimisation problems reflecting
several types of theoretically optimal behaviours for energy
exchanges between prosumers. We finally provide an illustration
of a decision making strategy allowing a prosumer community
to generate more distributed electricity (compared to commonly
applied strategies) by mitigating over-voltages over a low-voltage
feeder.

I. INTRODUCTION

This paper is dedicated to electricity prosumer communi-
ties, i.e. groups of people producing, sharing and consuming
electricity locally. One of the main trigger of the emergence
of the concept of energy communities is distributed electricity
generation. By distributed electricity generation, we mainly
mean PhotoVoltaic (PV) units, small wind turbines and Com-
bined Heat and Power (CHP) that may be installed close to
consumers. A cost-drop has been observed in the past recent
years, especially in the cost for producing PV panels. In
addition to this, promises raised by recent advances made in
the field of Electric Vehicles (EVs) and batteries may also
emphasise in the coming years the metamorphosis of the elec-
tricity production, distribution and consumption landscape that
is already happening. In addition to electricity production and
storage technology improvements, one should also mention the
emergence of information technologies facilitating interactions
between prosumers [1]. One should also note the existence of
projects related to the use of distributed ledgers for managing
energy exchanges [2] between microgrids1.

In this paper, we consider that the energy community
is composed of prosumers that are connected to the same
low-voltage distribution network and that there is only one
point of connection between the community and the power
system, which is called the root connection of the com-
munity. This means that the power exchanges between the
prosumers do not transit through distribution transformers.
Our goal is to propose a rigorous mathematical framework

1See for instance the Brooklyn Microgrid project.

for studying energy prosumer communities. We first propose a
mathematical framework for modelling the interaction between
several prosumers. We then formalise a few optimisation
problem targeting several different objectives (eg, maximising
the “green” production, taking losses into account, optimising
costs and revenues, etc). We propose a first community-based
decision making strategy for optimising “green” production
within a low-voltage feeder.

II. FORMALIZING AN ENERGY PROSUMER COMMUNITY

A. The Prosumers
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Q,t is positive when producing
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Q,t,
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D(i)

Q,t.
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2Considering reactive power is important as it allows greater flexibility in
the management of the networks and can allow the community to have more
leverage on the network constraints.
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P,t =
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t � ✓(i j)
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⌘
+ �D(i)

P,t (3)

where �D(i)
P,t is the difference between the power injected

into the distribution network and the sum of active power
exchanges between the members of the community. Note that,
in the case where the local production P (i)

P,t is not high enough
to cover the load L(i)

P,t, the variable D(i)
P,t may take some

negative values (depending also on the amount of power that
can be taken from the storage device).

The conservation of reactive power at the prosumer’s loca-
tion induces the following:

8t, i, P (i)
Q,t = L(i)

Q,t +D(i)
Q,t (4)

In this paper, we focus on energy exchanges among pro-
sumers. For this reason, we choose to neglect electricity losses
that are not directly associated with energy exchanges between
prosumers.

Prosumers may not always be able to produce electricity
at its maximal potential (for instance, PV production may be
curtailed when, for instance, the local storage device is fully
recharged, no exchanges between prosumers are possible, and
an overvoltages are observed on the distribution network be-
cause many prosumers are injecting together simultaneously:
such a situation may appear on sunny days [3], [4]). Thus, for
every prosumer, for every time-step, we define the maximal
production potential which depends on hardware and weather
data:

8t, i P (i)
P,t  P (i),max

P,t (5)

P (i),max
t may be influenced by several parameters, in particular

weather conditions.
The reactive power is limited by the capability curve of

the distributed energy ressources. It depends on the minimum
power factor, the maximum apparent power and the current
active power production.

8t, i
���P (i)
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���  P (i),max
Q

⇣
P (i)
P,t

⌘
(6)

The injected power into the storage device is capped by a
factor that mainly depends on the characteristics of the storage
device and its current level of charge:
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⇣
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t
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(7)

The injected power into the distribution network is also
capped, depending on the load and local production, charac-
teristics and level of charge of the battery, and also additional
(stochastic) variables, such as weather, that may influence the
voltage of the low-voltage feeder (e.g. unbability to inject

power into the network if the voltage is higher than 1.1 p.u.),
thus potentially preventing from power injection:
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(9)
The level of charge of the storage capacity is also bounded:

8t, i 0  �(i)
t  �(i),max (10)

B. The Community

Everything that is not produced by the community has
to come from the distribution network through the root of
the community. By measuring the active and reactive power
transfer at the root, and by comparing the measured powers
to those measured at the prosumers’ location, we can deduce
the losses and the import of reactive power:

8t ⇤(c)
P,t = D(c)

P,t �
NX

i=1

D(i)
P,t (11)
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i=1

D(i)
Q,t (12)

where ⇤(c)
P,t (resp. ⇤(c)

Q,t) denotes the overall losses inside the
electrical network of the community (resp. reactive power
absorbed by the community network lines), D(c)

P,t (resp. D(c)
P,t)

is the active (resp. reactive) power measured at the root of the
community.

C. Costs and Revenues

At every time-step, we define a set of price variables,
expressed in e/kWh. First, each prosumer (i) may purchase
electricity from its retailer at a specific price Pr(D!i)

t . Also,
each prosumer (i) may buy electricity from prosumer (j)
(j 6= i) at a price Pr(j!i)

t . Each prosumer (i) may also sell
electricity to the (distribution) network at a price Pr(i!D)

t ,
and to other prosumers at a price Pr(i!j)

t . By convention,
we assume that all prices considered in the paper are positive.
From time t to t+1, a prosumer (i) will suffer the following
cost:

c(i)
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✓
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��D(i)

t , 0
⌘
Pr(D!i)

t

+
PN
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⇣
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⌘
Pr(j!i)

t

◆
(13)

In the same time, it will also receive the following revenues:

r(i)
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✓
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�D(i)

t , 0
⌘
Pr(i!D)

t

+
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⇣
✓(j i)
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⌘
Pr(i j)

t

◆
(14)



Modelling a local energy community

Conservation of reactive power at the prosumer’s location 

  

Other power-related constraints: 

At every time step, the active power that is produced by
prosumer (i) must satisfy the following relationship:

8t, i, P (i)
P,t = L(i)

P,t +D(i)
P,t + S(i)

P,t (2)

8t, i, D(i)
P,t =

NX

j=1

⇣
✓(i!j)
t � ✓(i j)

t

⌘
+ �D(i)

P,t (3)

where �D(i)
P,t is the difference between the power injected

into the distribution network and the sum of active power
exchanges between the members of the community. Note that,
in the case where the local production P (i)

P,t is not high enough
to cover the load L(i)

P,t, the variable D(i)
P,t may take some

negative values (depending also on the amount of power that
can be taken from the storage device).

The conservation of reactive power at the prosumer’s loca-
tion induces the following:

8t, i, P (i)
Q,t = L(i)

Q,t +D(i)
Q,t (4)

In this paper, we focus on energy exchanges among pro-
sumers. For this reason, we choose to neglect electricity losses
that are not directly associated with energy exchanges between
prosumers.

Prosumers may not always be able to produce electricity
at its maximal potential (for instance, PV production may be
curtailed when, for instance, the local storage device is fully
recharged, no exchanges between prosumers are possible, and
an overvoltages are observed on the distribution network be-
cause many prosumers are injecting together simultaneously:
such a situation may appear on sunny days [3], [4]). Thus, for
every prosumer, for every time-step, we define the maximal
production potential which depends on hardware and weather
data:

8t, i P (i)
P,t  P (i),max

P,t (5)

P (i),max
t may be influenced by several parameters, in particular

weather conditions.
The reactive power is limited by the capability curve of

the distributed energy ressources. It depends on the minimum
power factor, the maximum apparent power and the current
active power production.

8t, i
���P (i)

Q,t

���  P (i),max
Q

⇣
P (i)
P,t

⌘
(6)

The injected power into the storage device is capped by a
factor that mainly depends on the characteristics of the storage
device and its current level of charge:

8t, i,
���S(i)

t

���  S(i),max
⇣

�(i)
t

⌘

(7)

The injected power into the distribution network is also
capped, depending on the load and local production, charac-
teristics and level of charge of the battery, and also additional
(stochastic) variables, such as weather, that may influence the
voltage of the low-voltage feeder (e.g. unbability to inject

power into the network if the voltage is higher than 1.1 p.u.),
thus potentially preventing from power injection:

8t, i,
���D(i)

P,t

���

 D(i),max
P

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(8)

8t, i,
���D(i)

Q,t

���

 D(i),max
Q

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(9)
The level of charge of the storage capacity is also bounded:

8t, i 0  �(i)
t  �(i),max (10)

B. The Community

Everything that is not produced by the community has
to come from the distribution network through the root of
the community. By measuring the active and reactive power
transfer at the root, and by comparing the measured powers
to those measured at the prosumers’ location, we can deduce
the losses and the import of reactive power:

8t ⇤(c)
P,t = D(c)

P,t �
NX

i=1

D(i)
P,t (11)

8t ⇤(c)
Q,t = D(c)

Q,t �
NX

i=1

D(i)
Q,t (12)

where ⇤(c)
P,t (resp. ⇤(c)

Q,t) denotes the overall losses inside the
electrical network of the community (resp. reactive power
absorbed by the community network lines), D(c)

P,t (resp. D(c)
P,t)

is the active (resp. reactive) power measured at the root of the
community.

C. Costs and Revenues

At every time-step, we define a set of price variables,
expressed in e/kWh. First, each prosumer (i) may purchase
electricity from its retailer at a specific price Pr(D!i)

t . Also,
each prosumer (i) may buy electricity from prosumer (j)
(j 6= i) at a price Pr(j!i)

t . Each prosumer (i) may also sell
electricity to the (distribution) network at a price Pr(i!D)

t ,
and to other prosumers at a price Pr(i!j)

t . By convention,
we assume that all prices considered in the paper are positive.
From time t to t+1, a prosumer (i) will suffer the following
cost:

c(i)
t = �

✓
max

⇣
��D(i)

t , 0
⌘
Pr(D!i)

t

+
PN

j=1 max
⇣

✓(i j)
t , 0

⌘
Pr(j!i)

t

◆
(13)

In the same time, it will also receive the following revenues:

r(i)
t = �

✓
max

⇣
�D(i)

t , 0
⌘
Pr(i!D)

t

+
PN

j=1 max
⇣

✓(j i)
t , 0

⌘
Pr(i j)

t

◆
(14)

At every time step, the active power that is produced by
prosumer (i) must satisfy the following relationship:

8t, i, P (i)
P,t = L(i)

P,t +D(i)
P,t + S(i)

P,t (2)

8t, i, D(i)
P,t =

NX

j=1

⇣
✓(i!j)
t � ✓(i j)

t

⌘
+ �D(i)

P,t (3)

where �D(i)
P,t is the difference between the power injected

into the distribution network and the sum of active power
exchanges between the members of the community. Note that,
in the case where the local production P (i)

P,t is not high enough
to cover the load L(i)

P,t, the variable D(i)
P,t may take some

negative values (depending also on the amount of power that
can be taken from the storage device).

The conservation of reactive power at the prosumer’s loca-
tion induces the following:

8t, i, P (i)
Q,t = L(i)

Q,t +D(i)
Q,t (4)

In this paper, we focus on energy exchanges among pro-
sumers. For this reason, we choose to neglect electricity losses
that are not directly associated with energy exchanges between
prosumers.

Prosumers may not always be able to produce electricity
at its maximal potential (for instance, PV production may be
curtailed when, for instance, the local storage device is fully
recharged, no exchanges between prosumers are possible, and
an overvoltages are observed on the distribution network be-
cause many prosumers are injecting together simultaneously:
such a situation may appear on sunny days [3], [4]). Thus, for
every prosumer, for every time-step, we define the maximal
production potential which depends on hardware and weather
data:

8t, i P (i)
P,t  P (i),max

P,t (5)

P (i),max
t may be influenced by several parameters, in particular

weather conditions.
The reactive power is limited by the capability curve of

the distributed energy ressources. It depends on the minimum
power factor, the maximum apparent power and the current
active power production.

8t, i
���P (i)

Q,t

���  P (i),max
Q

⇣
P (i)
P,t

⌘
(6)

The injected power into the storage device is capped by a
factor that mainly depends on the characteristics of the storage
device and its current level of charge:

8t, i,
���S(i)

t

���  S(i),max
⇣

�(i)
t

⌘

(7)

The injected power into the distribution network is also
capped, depending on the load and local production, charac-
teristics and level of charge of the battery, and also additional
(stochastic) variables, such as weather, that may influence the
voltage of the low-voltage feeder (e.g. unbability to inject

power into the network if the voltage is higher than 1.1 p.u.),
thus potentially preventing from power injection:

8t, i,
���D(i)

P,t

���

 D(i),max
P

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(8)

8t, i,
���D(i)

Q,t

���

 D(i),max
Q

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(9)
The level of charge of the storage capacity is also bounded:

8t, i 0  �(i)
t  �(i),max (10)

B. The Community

Everything that is not produced by the community has
to come from the distribution network through the root of
the community. By measuring the active and reactive power
transfer at the root, and by comparing the measured powers
to those measured at the prosumers’ location, we can deduce
the losses and the import of reactive power:

8t ⇤(c)
P,t = D(c)

P,t �
NX

i=1

D(i)
P,t (11)

8t ⇤(c)
Q,t = D(c)

Q,t �
NX

i=1

D(i)
Q,t (12)

where ⇤(c)
P,t (resp. ⇤(c)

Q,t) denotes the overall losses inside the
electrical network of the community (resp. reactive power
absorbed by the community network lines), D(c)

P,t (resp. D(c)
P,t)

is the active (resp. reactive) power measured at the root of the
community.

C. Costs and Revenues

At every time-step, we define a set of price variables,
expressed in e/kWh. First, each prosumer (i) may purchase
electricity from its retailer at a specific price Pr(D!i)

t . Also,
each prosumer (i) may buy electricity from prosumer (j)
(j 6= i) at a price Pr(j!i)

t . Each prosumer (i) may also sell
electricity to the (distribution) network at a price Pr(i!D)

t ,
and to other prosumers at a price Pr(i!j)

t . By convention,
we assume that all prices considered in the paper are positive.
From time t to t+1, a prosumer (i) will suffer the following
cost:

c(i)
t = �

✓
max

⇣
��D(i)

t , 0
⌘
Pr(D!i)

t

+
PN

j=1 max
⇣

✓(i j)
t , 0

⌘
Pr(j!i)

t

◆
(13)

In the same time, it will also receive the following revenues:

r(i)
t = �

✓
max

⇣
�D(i)

t , 0
⌘
Pr(i!D)

t

+
PN

j=1 max
⇣

✓(j i)
t , 0

⌘
Pr(i j)

t

◆
(14)

At every time step, the active power that is produced by
prosumer (i) must satisfy the following relationship:

8t, i, P (i)
P,t = L(i)

P,t +D(i)
P,t + S(i)

P,t (2)

8t, i, D(i)
P,t =

NX

j=1

⇣
✓(i!j)
t � ✓(i j)

t

⌘
+ �D(i)

P,t (3)

where �D(i)
P,t is the difference between the power injected

into the distribution network and the sum of active power
exchanges between the members of the community. Note that,
in the case where the local production P (i)

P,t is not high enough
to cover the load L(i)

P,t, the variable D(i)
P,t may take some

negative values (depending also on the amount of power that
can be taken from the storage device).

The conservation of reactive power at the prosumer’s loca-
tion induces the following:

8t, i, P (i)
Q,t = L(i)

Q,t +D(i)
Q,t (4)

In this paper, we focus on energy exchanges among pro-
sumers. For this reason, we choose to neglect electricity losses
that are not directly associated with energy exchanges between
prosumers.

Prosumers may not always be able to produce electricity
at its maximal potential (for instance, PV production may be
curtailed when, for instance, the local storage device is fully
recharged, no exchanges between prosumers are possible, and
an overvoltages are observed on the distribution network be-
cause many prosumers are injecting together simultaneously:
such a situation may appear on sunny days [3], [4]). Thus, for
every prosumer, for every time-step, we define the maximal
production potential which depends on hardware and weather
data:

8t, i P (i)
P,t  P (i),max

P,t (5)

P (i),max
t may be influenced by several parameters, in particular

weather conditions.
The reactive power is limited by the capability curve of

the distributed energy ressources. It depends on the minimum
power factor, the maximum apparent power and the current
active power production.

8t, i
���P (i)

Q,t

���  P (i),max
Q

⇣
P (i)
P,t

⌘
(6)

The injected power into the storage device is capped by a
factor that mainly depends on the characteristics of the storage
device and its current level of charge:

8t, i,
���S(i)

t

���  S(i),max
⇣

�(i)
t

⌘

(7)

The injected power into the distribution network is also
capped, depending on the load and local production, charac-
teristics and level of charge of the battery, and also additional
(stochastic) variables, such as weather, that may influence the
voltage of the low-voltage feeder (e.g. unbability to inject

power into the network if the voltage is higher than 1.1 p.u.),
thus potentially preventing from power injection:

8t, i,
���D(i)

P,t

���

 D(i),max
P

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(8)

8t, i,
���D(i)

Q,t

���

 D(i),max
Q

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(9)
The level of charge of the storage capacity is also bounded:

8t, i 0  �(i)
t  �(i),max (10)

B. The Community

Everything that is not produced by the community has
to come from the distribution network through the root of
the community. By measuring the active and reactive power
transfer at the root, and by comparing the measured powers
to those measured at the prosumers’ location, we can deduce
the losses and the import of reactive power:

8t ⇤(c)
P,t = D(c)

P,t �
NX

i=1

D(i)
P,t (11)

8t ⇤(c)
Q,t = D(c)

Q,t �
NX

i=1

D(i)
Q,t (12)

where ⇤(c)
P,t (resp. ⇤(c)

Q,t) denotes the overall losses inside the
electrical network of the community (resp. reactive power
absorbed by the community network lines), D(c)

P,t (resp. D(c)
P,t)

is the active (resp. reactive) power measured at the root of the
community.

C. Costs and Revenues

At every time-step, we define a set of price variables,
expressed in e/kWh. First, each prosumer (i) may purchase
electricity from its retailer at a specific price Pr(D!i)

t . Also,
each prosumer (i) may buy electricity from prosumer (j)
(j 6= i) at a price Pr(j!i)

t . Each prosumer (i) may also sell
electricity to the (distribution) network at a price Pr(i!D)

t ,
and to other prosumers at a price Pr(i!j)

t . By convention,
we assume that all prices considered in the paper are positive.
From time t to t+1, a prosumer (i) will suffer the following
cost:

c(i)
t = �

✓
max

⇣
��D(i)

t , 0
⌘
Pr(D!i)

t

+
PN

j=1 max
⇣

✓(i j)
t , 0

⌘
Pr(j!i)

t

◆
(13)

In the same time, it will also receive the following revenues:

r(i)
t = �

✓
max

⇣
�D(i)

t , 0
⌘
Pr(i!D)

t

+
PN

j=1 max
⇣

✓(j i)
t , 0

⌘
Pr(i j)

t

◆
(14)

At every time step, the active power that is produced by
prosumer (i) must satisfy the following relationship:

8t, i, P (i)
P,t = L(i)

P,t +D(i)
P,t + S(i)

P,t (2)

8t, i, D(i)
P,t =

NX

j=1

⇣
✓(i!j)
t � ✓(i j)

t

⌘
+ �D(i)

P,t (3)

where �D(i)
P,t is the difference between the power injected

into the distribution network and the sum of active power
exchanges between the members of the community. Note that,
in the case where the local production P (i)

P,t is not high enough
to cover the load L(i)

P,t, the variable D(i)
P,t may take some

negative values (depending also on the amount of power that
can be taken from the storage device).

The conservation of reactive power at the prosumer’s loca-
tion induces the following:

8t, i, P (i)
Q,t = L(i)

Q,t +D(i)
Q,t (4)

In this paper, we focus on energy exchanges among pro-
sumers. For this reason, we choose to neglect electricity losses
that are not directly associated with energy exchanges between
prosumers.

Prosumers may not always be able to produce electricity
at its maximal potential (for instance, PV production may be
curtailed when, for instance, the local storage device is fully
recharged, no exchanges between prosumers are possible, and
an overvoltages are observed on the distribution network be-
cause many prosumers are injecting together simultaneously:
such a situation may appear on sunny days [3], [4]). Thus, for
every prosumer, for every time-step, we define the maximal
production potential which depends on hardware and weather
data:

8t, i P (i)
P,t  P (i),max

P,t (5)

P (i),max
t may be influenced by several parameters, in particular

weather conditions.
The reactive power is limited by the capability curve of

the distributed energy ressources. It depends on the minimum
power factor, the maximum apparent power and the current
active power production.

8t, i
���P (i)

Q,t

���  P (i),max
Q

⇣
P (i)
P,t

⌘
(6)

The injected power into the storage device is capped by a
factor that mainly depends on the characteristics of the storage
device and its current level of charge:

8t, i,
���S(i)

t

���  S(i),max
⇣

�(i)
t

⌘

(7)

The injected power into the distribution network is also
capped, depending on the load and local production, charac-
teristics and level of charge of the battery, and also additional
(stochastic) variables, such as weather, that may influence the
voltage of the low-voltage feeder (e.g. unbability to inject

power into the network if the voltage is higher than 1.1 p.u.),
thus potentially preventing from power injection:

8t, i,
���D(i)

P,t

���

 D(i),max
P

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(8)

8t, i,
���D(i)

Q,t

���

 D(i),max
Q

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(9)
The level of charge of the storage capacity is also bounded:

8t, i 0  �(i)
t  �(i),max (10)

B. The Community

Everything that is not produced by the community has
to come from the distribution network through the root of
the community. By measuring the active and reactive power
transfer at the root, and by comparing the measured powers
to those measured at the prosumers’ location, we can deduce
the losses and the import of reactive power:

8t ⇤(c)
P,t = D(c)

P,t �
NX

i=1

D(i)
P,t (11)

8t ⇤(c)
Q,t = D(c)

Q,t �
NX

i=1

D(i)
Q,t (12)

where ⇤(c)
P,t (resp. ⇤(c)

Q,t) denotes the overall losses inside the
electrical network of the community (resp. reactive power
absorbed by the community network lines), D(c)

P,t (resp. D(c)
P,t)

is the active (resp. reactive) power measured at the root of the
community.

C. Costs and Revenues

At every time-step, we define a set of price variables,
expressed in e/kWh. First, each prosumer (i) may purchase
electricity from its retailer at a specific price Pr(D!i)

t . Also,
each prosumer (i) may buy electricity from prosumer (j)
(j 6= i) at a price Pr(j!i)

t . Each prosumer (i) may also sell
electricity to the (distribution) network at a price Pr(i!D)

t ,
and to other prosumers at a price Pr(i!j)

t . By convention,
we assume that all prices considered in the paper are positive.
From time t to t+1, a prosumer (i) will suffer the following
cost:

c(i)
t = �

✓
max

⇣
��D(i)

t , 0
⌘
Pr(D!i)

t

+
PN

j=1 max
⇣

✓(i j)
t , 0

⌘
Pr(j!i)

t

◆
(13)

In the same time, it will also receive the following revenues:

r(i)
t = �

✓
max

⇣
�D(i)

t , 0
⌘
Pr(i!D)

t

+
PN

j=1 max
⇣

✓(j i)
t , 0

⌘
Pr(i j)

t

◆
(14)

At every time step, the active power that is produced by
prosumer (i) must satisfy the following relationship:

8t, i, P (i)
P,t = L(i)

P,t +D(i)
P,t + S(i)

P,t (2)

8t, i, D(i)
P,t =

NX

j=1

⇣
✓(i!j)
t � ✓(i j)

t

⌘
+ �D(i)

P,t (3)

where �D(i)
P,t is the difference between the power injected

into the distribution network and the sum of active power
exchanges between the members of the community. Note that,
in the case where the local production P (i)

P,t is not high enough
to cover the load L(i)

P,t, the variable D(i)
P,t may take some

negative values (depending also on the amount of power that
can be taken from the storage device).

The conservation of reactive power at the prosumer’s loca-
tion induces the following:

8t, i, P (i)
Q,t = L(i)

Q,t +D(i)
Q,t (4)

In this paper, we focus on energy exchanges among pro-
sumers. For this reason, we choose to neglect electricity losses
that are not directly associated with energy exchanges between
prosumers.

Prosumers may not always be able to produce electricity
at its maximal potential (for instance, PV production may be
curtailed when, for instance, the local storage device is fully
recharged, no exchanges between prosumers are possible, and
an overvoltages are observed on the distribution network be-
cause many prosumers are injecting together simultaneously:
such a situation may appear on sunny days [3], [4]). Thus, for
every prosumer, for every time-step, we define the maximal
production potential which depends on hardware and weather
data:

8t, i P (i)
P,t  P (i),max

P,t (5)

P (i),max
t may be influenced by several parameters, in particular

weather conditions.
The reactive power is limited by the capability curve of

the distributed energy ressources. It depends on the minimum
power factor, the maximum apparent power and the current
active power production.

8t, i
���P (i)

Q,t

���  P (i),max
Q

⇣
P (i)
P,t

⌘
(6)

The injected power into the storage device is capped by a
factor that mainly depends on the characteristics of the storage
device and its current level of charge:

8t, i,
���S(i)

t

���  S(i),max
⇣

�(i)
t

⌘

(7)

The injected power into the distribution network is also
capped, depending on the load and local production, charac-
teristics and level of charge of the battery, and also additional
(stochastic) variables, such as weather, that may influence the
voltage of the low-voltage feeder (e.g. unbability to inject

power into the network if the voltage is higher than 1.1 p.u.),
thus potentially preventing from power injection:

8t, i,
���D(i)

P,t

���

 D(i),max
P

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(8)

8t, i,
���D(i)

Q,t

���

 D(i),max
Q

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(9)
The level of charge of the storage capacity is also bounded:

8t, i 0  �(i)
t  �(i),max (10)

B. The Community

Everything that is not produced by the community has
to come from the distribution network through the root of
the community. By measuring the active and reactive power
transfer at the root, and by comparing the measured powers
to those measured at the prosumers’ location, we can deduce
the losses and the import of reactive power:

8t ⇤(c)
P,t = D(c)

P,t �
NX

i=1

D(i)
P,t (11)

8t ⇤(c)
Q,t = D(c)

Q,t �
NX

i=1

D(i)
Q,t (12)

where ⇤(c)
P,t (resp. ⇤(c)

Q,t) denotes the overall losses inside the
electrical network of the community (resp. reactive power
absorbed by the community network lines), D(c)

P,t (resp. D(c)
P,t)

is the active (resp. reactive) power measured at the root of the
community.

C. Costs and Revenues

At every time-step, we define a set of price variables,
expressed in e/kWh. First, each prosumer (i) may purchase
electricity from its retailer at a specific price Pr(D!i)

t . Also,
each prosumer (i) may buy electricity from prosumer (j)
(j 6= i) at a price Pr(j!i)

t . Each prosumer (i) may also sell
electricity to the (distribution) network at a price Pr(i!D)

t ,
and to other prosumers at a price Pr(i!j)

t . By convention,
we assume that all prices considered in the paper are positive.
From time t to t+1, a prosumer (i) will suffer the following
cost:

c(i)
t = �

✓
max

⇣
��D(i)

t , 0
⌘
Pr(D!i)

t

+
PN

j=1 max
⇣

✓(i j)
t , 0

⌘
Pr(j!i)

t

◆
(13)

In the same time, it will also receive the following revenues:

r(i)
t = �

✓
max

⇣
�D(i)

t , 0
⌘
Pr(i!D)

t

+
PN

j=1 max
⇣

✓(j i)
t , 0

⌘
Pr(i j)

t

◆
(14)



Modelling a local energy community

Network constraints: 

At the root of the community: 

At every time step, the active power that is produced by
prosumer (i) must satisfy the following relationship:

8t, i, P (i)
P,t = L(i)

P,t +D(i)
P,t + S(i)

P,t (2)

8t, i, D(i)
P,t =

NX

j=1

⇣
✓(i!j)
t � ✓(i j)

t

⌘
+ �D(i)

P,t (3)

where �D(i)
P,t is the difference between the power injected

into the distribution network and the sum of active power
exchanges between the members of the community. Note that,
in the case where the local production P (i)

P,t is not high enough
to cover the load L(i)

P,t, the variable D(i)
P,t may take some

negative values (depending also on the amount of power that
can be taken from the storage device).

The conservation of reactive power at the prosumer’s loca-
tion induces the following:

8t, i, P (i)
Q,t = L(i)

Q,t +D(i)
Q,t (4)

In this paper, we focus on energy exchanges among pro-
sumers. For this reason, we choose to neglect electricity losses
that are not directly associated with energy exchanges between
prosumers.

Prosumers may not always be able to produce electricity
at its maximal potential (for instance, PV production may be
curtailed when, for instance, the local storage device is fully
recharged, no exchanges between prosumers are possible, and
an overvoltages are observed on the distribution network be-
cause many prosumers are injecting together simultaneously:
such a situation may appear on sunny days [3], [4]). Thus, for
every prosumer, for every time-step, we define the maximal
production potential which depends on hardware and weather
data:

8t, i P (i)
P,t  P (i),max

P,t (5)

P (i),max
t may be influenced by several parameters, in particular

weather conditions.
The reactive power is limited by the capability curve of

the distributed energy ressources. It depends on the minimum
power factor, the maximum apparent power and the current
active power production.

8t, i
���P (i)

Q,t

���  P (i),max
Q

⇣
P (i)
P,t

⌘
(6)

The injected power into the storage device is capped by a
factor that mainly depends on the characteristics of the storage
device and its current level of charge:

8t, i,
���S(i)

t

���  S(i),max
⇣

�(i)
t

⌘

(7)

The injected power into the distribution network is also
capped, depending on the load and local production, charac-
teristics and level of charge of the battery, and also additional
(stochastic) variables, such as weather, that may influence the
voltage of the low-voltage feeder (e.g. unbability to inject

power into the network if the voltage is higher than 1.1 p.u.),
thus potentially preventing from power injection:

8t, i,
���D(i)

P,t

���

 D(i),max
P

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(8)

8t, i,
���D(i)

Q,t

���

 D(i),max
Q

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(9)
The level of charge of the storage capacity is also bounded:

8t, i 0  �(i)
t  �(i),max (10)

B. The Community

Everything that is not produced by the community has
to come from the distribution network through the root of
the community. By measuring the active and reactive power
transfer at the root, and by comparing the measured powers
to those measured at the prosumers’ location, we can deduce
the losses and the import of reactive power:

8t ⇤(c)
P,t = D(c)

P,t �
NX

i=1

D(i)
P,t (11)

8t ⇤(c)
Q,t = D(c)

Q,t �
NX

i=1

D(i)
Q,t (12)

where ⇤(c)
P,t (resp. ⇤(c)

Q,t) denotes the overall losses inside the
electrical network of the community (resp. reactive power
absorbed by the community network lines), D(c)

P,t (resp. D(c)
P,t)

is the active (resp. reactive) power measured at the root of the
community.

C. Costs and Revenues

At every time-step, we define a set of price variables,
expressed in e/kWh. First, each prosumer (i) may purchase
electricity from its retailer at a specific price Pr(D!i)

t . Also,
each prosumer (i) may buy electricity from prosumer (j)
(j 6= i) at a price Pr(j!i)

t . Each prosumer (i) may also sell
electricity to the (distribution) network at a price Pr(i!D)

t ,
and to other prosumers at a price Pr(i!j)

t . By convention,
we assume that all prices considered in the paper are positive.
From time t to t+1, a prosumer (i) will suffer the following
cost:

c(i)
t = �

✓
max

⇣
��D(i)

t , 0
⌘
Pr(D!i)

t

+
PN

j=1 max
⇣

✓(i j)
t , 0

⌘
Pr(j!i)

t

◆
(13)

In the same time, it will also receive the following revenues:

r(i)
t = �

✓
max

⇣
�D(i)

t , 0
⌘
Pr(i!D)

t

+
PN

j=1 max
⇣

✓(j i)
t , 0

⌘
Pr(i j)

t

◆
(14)

At every time step, the active power that is produced by
prosumer (i) must satisfy the following relationship:

8t, i, P (i)
P,t = L(i)

P,t +D(i)
P,t + S(i)

P,t (2)

8t, i, D(i)
P,t =

NX

j=1

⇣
✓(i!j)
t � ✓(i j)

t

⌘
+ �D(i)

P,t (3)

where �D(i)
P,t is the difference between the power injected

into the distribution network and the sum of active power
exchanges between the members of the community. Note that,
in the case where the local production P (i)

P,t is not high enough
to cover the load L(i)

P,t, the variable D(i)
P,t may take some

negative values (depending also on the amount of power that
can be taken from the storage device).

The conservation of reactive power at the prosumer’s loca-
tion induces the following:

8t, i, P (i)
Q,t = L(i)

Q,t +D(i)
Q,t (4)

In this paper, we focus on energy exchanges among pro-
sumers. For this reason, we choose to neglect electricity losses
that are not directly associated with energy exchanges between
prosumers.

Prosumers may not always be able to produce electricity
at its maximal potential (for instance, PV production may be
curtailed when, for instance, the local storage device is fully
recharged, no exchanges between prosumers are possible, and
an overvoltages are observed on the distribution network be-
cause many prosumers are injecting together simultaneously:
such a situation may appear on sunny days [3], [4]). Thus, for
every prosumer, for every time-step, we define the maximal
production potential which depends on hardware and weather
data:

8t, i P (i)
P,t  P (i),max

P,t (5)

P (i),max
t may be influenced by several parameters, in particular

weather conditions.
The reactive power is limited by the capability curve of

the distributed energy ressources. It depends on the minimum
power factor, the maximum apparent power and the current
active power production.

8t, i
���P (i)

Q,t

���  P (i),max
Q

⇣
P (i)
P,t

⌘
(6)

The injected power into the storage device is capped by a
factor that mainly depends on the characteristics of the storage
device and its current level of charge:

8t, i,
���S(i)

t

���  S(i),max
⇣

�(i)
t

⌘

(7)

The injected power into the distribution network is also
capped, depending on the load and local production, charac-
teristics and level of charge of the battery, and also additional
(stochastic) variables, such as weather, that may influence the
voltage of the low-voltage feeder (e.g. unbability to inject

power into the network if the voltage is higher than 1.1 p.u.),
thus potentially preventing from power injection:

8t, i,
���D(i)

P,t

���

 D(i),max
P

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(8)

8t, i,
���D(i)

Q,t

���

 D(i),max
Q

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(9)
The level of charge of the storage capacity is also bounded:

8t, i 0  �(i)
t  �(i),max (10)

B. The Community

Everything that is not produced by the community has
to come from the distribution network through the root of
the community. By measuring the active and reactive power
transfer at the root, and by comparing the measured powers
to those measured at the prosumers’ location, we can deduce
the losses and the import of reactive power:

8t ⇤(c)
P,t = D(c)

P,t �
NX

i=1

D(i)
P,t (11)

8t ⇤(c)
Q,t = D(c)

Q,t �
NX

i=1

D(i)
Q,t (12)

where ⇤(c)
P,t (resp. ⇤(c)

Q,t) denotes the overall losses inside the
electrical network of the community (resp. reactive power
absorbed by the community network lines), D(c)

P,t (resp. D(c)
P,t)

is the active (resp. reactive) power measured at the root of the
community.

C. Costs and Revenues

At every time-step, we define a set of price variables,
expressed in e/kWh. First, each prosumer (i) may purchase
electricity from its retailer at a specific price Pr(D!i)

t . Also,
each prosumer (i) may buy electricity from prosumer (j)
(j 6= i) at a price Pr(j!i)

t . Each prosumer (i) may also sell
electricity to the (distribution) network at a price Pr(i!D)

t ,
and to other prosumers at a price Pr(i!j)

t . By convention,
we assume that all prices considered in the paper are positive.
From time t to t+1, a prosumer (i) will suffer the following
cost:

c(i)
t = �

✓
max

⇣
��D(i)

t , 0
⌘
Pr(D!i)

t

+
PN

j=1 max
⇣

✓(i j)
t , 0

⌘
Pr(j!i)

t

◆
(13)

In the same time, it will also receive the following revenues:

r(i)
t = �

✓
max

⇣
�D(i)

t , 0
⌘
Pr(i!D)

t

+
PN

j=1 max
⇣

✓(j i)
t , 0

⌘
Pr(i j)

t

◆
(14)

At every time step, the active power that is produced by
prosumer (i) must satisfy the following relationship:

8t, i, P (i)
P,t = L(i)

P,t +D(i)
P,t + S(i)

P,t (2)

8t, i, D(i)
P,t =

NX

j=1

⇣
✓(i!j)
t � ✓(i j)

t

⌘
+ �D(i)

P,t (3)

where �D(i)
P,t is the difference between the power injected

into the distribution network and the sum of active power
exchanges between the members of the community. Note that,
in the case where the local production P (i)

P,t is not high enough
to cover the load L(i)

P,t, the variable D(i)
P,t may take some

negative values (depending also on the amount of power that
can be taken from the storage device).

The conservation of reactive power at the prosumer’s loca-
tion induces the following:

8t, i, P (i)
Q,t = L(i)

Q,t +D(i)
Q,t (4)

In this paper, we focus on energy exchanges among pro-
sumers. For this reason, we choose to neglect electricity losses
that are not directly associated with energy exchanges between
prosumers.

Prosumers may not always be able to produce electricity
at its maximal potential (for instance, PV production may be
curtailed when, for instance, the local storage device is fully
recharged, no exchanges between prosumers are possible, and
an overvoltages are observed on the distribution network be-
cause many prosumers are injecting together simultaneously:
such a situation may appear on sunny days [3], [4]). Thus, for
every prosumer, for every time-step, we define the maximal
production potential which depends on hardware and weather
data:

8t, i P (i)
P,t  P (i),max

P,t (5)

P (i),max
t may be influenced by several parameters, in particular

weather conditions.
The reactive power is limited by the capability curve of

the distributed energy ressources. It depends on the minimum
power factor, the maximum apparent power and the current
active power production.

8t, i
���P (i)

Q,t

���  P (i),max
Q

⇣
P (i)
P,t

⌘
(6)

The injected power into the storage device is capped by a
factor that mainly depends on the characteristics of the storage
device and its current level of charge:

8t, i,
���S(i)

t

���  S(i),max
⇣

�(i)
t

⌘

(7)

The injected power into the distribution network is also
capped, depending on the load and local production, charac-
teristics and level of charge of the battery, and also additional
(stochastic) variables, such as weather, that may influence the
voltage of the low-voltage feeder (e.g. unbability to inject

power into the network if the voltage is higher than 1.1 p.u.),
thus potentially preventing from power injection:

8t, i,
���D(i)

P,t

���

 D(i),max
P

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(8)

8t, i,
���D(i)

Q,t

���

 D(i),max
Q

⇣
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t , D(j 6=i)

P,t , D(j 6=i)
Q,t

⌘

(9)
The level of charge of the storage capacity is also bounded:

8t, i 0  �(i)
t  �(i),max (10)

B. The Community

Everything that is not produced by the community has
to come from the distribution network through the root of
the community. By measuring the active and reactive power
transfer at the root, and by comparing the measured powers
to those measured at the prosumers’ location, we can deduce
the losses and the import of reactive power:
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where ⇤(c)
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Q,t) denotes the overall losses inside the
electrical network of the community (resp. reactive power
absorbed by the community network lines), D(c)

P,t (resp. D(c)
P,t)

is the active (resp. reactive) power measured at the root of the
community.

C. Costs and Revenues

At every time-step, we define a set of price variables,
expressed in e/kWh. First, each prosumer (i) may purchase
electricity from its retailer at a specific price Pr(D!i)

t . Also,
each prosumer (i) may buy electricity from prosumer (j)
(j 6= i) at a price Pr(j!i)

t . Each prosumer (i) may also sell
electricity to the (distribution) network at a price Pr(i!D)
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and to other prosumers at a price Pr(i!j)

t . By convention,
we assume that all prices considered in the paper are positive.
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At every time step, the active power that is produced by
prosumer (i) must satisfy the following relationship:
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where �D(i)
P,t is the difference between the power injected

into the distribution network and the sum of active power
exchanges between the members of the community. Note that,
in the case where the local production P (i)

P,t is not high enough
to cover the load L(i)

P,t, the variable D(i)
P,t may take some

negative values (depending also on the amount of power that
can be taken from the storage device).

The conservation of reactive power at the prosumer’s loca-
tion induces the following:
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In this paper, we focus on energy exchanges among pro-
sumers. For this reason, we choose to neglect electricity losses
that are not directly associated with energy exchanges between
prosumers.

Prosumers may not always be able to produce electricity
at its maximal potential (for instance, PV production may be
curtailed when, for instance, the local storage device is fully
recharged, no exchanges between prosumers are possible, and
an overvoltages are observed on the distribution network be-
cause many prosumers are injecting together simultaneously:
such a situation may appear on sunny days [3], [4]). Thus, for
every prosumer, for every time-step, we define the maximal
production potential which depends on hardware and weather
data:
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P (i),max
t may be influenced by several parameters, in particular

weather conditions.
The reactive power is limited by the capability curve of

the distributed energy ressources. It depends on the minimum
power factor, the maximum apparent power and the current
active power production.
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The injected power into the storage device is capped by a
factor that mainly depends on the characteristics of the storage
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The injected power into the distribution network is also
capped, depending on the load and local production, charac-
teristics and level of charge of the battery, and also additional
(stochastic) variables, such as weather, that may influence the
voltage of the low-voltage feeder (e.g. unbability to inject

power into the network if the voltage is higher than 1.1 p.u.),
thus potentially preventing from power injection:
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D. Community Dynamics

The variables dynamically evolve over time, also suffering
some stochasticity. We define a state vector ⌅t as being
the collection of all (measurable) variables related with the
physical characteristics of the system, and a price vector �t

gathering all prices : 8t 2 {0, . . . , T � 1},

⌅t =
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P (1)
P,t P (1)

Q,t

P (1),max
P,t P (1),max

Q,t
...

...
P (N)
P,t P (N)

Q,t

P (N),max
P,t P (N),max

Q,t

S(1)
t �(1)

t
...

...
S(N)
t �(N)

t

L(1)
P,t L(1)

Q,t
...

...
L(N)
P,t L(N)

Q,t

D(1)
P,t D(1)

Q,t
...

...
D(N)

P,t D(N)
Q,t

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, �t =

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

Pr(D!1)
t

Pr(1!D)
t

...
Pr(D!N)

t

Pr(N!D)
t

Pr(1!2)
t

Pr(2!1)
t
...

Pr(1!N)
t

Pr(N!1)
t

...
Pr(N�1!N)

t

Pr(N!N�1)
t

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

(15)

We also define two series of matrices. The first series ⇥!t is
related with energy exchanges between prosumers according
the the producer point of view, whereas the second series ⇥ t
is written according to the receiver (or consumer) point of
view:

⇥!t =
⇣
✓(i!j)
t

⌘

i,j
, ⇥ t =

⇣
✓(i j)
t

⌘

i,j
(16)

Since it may not be easy to assess wether the system defined
through the previously described state vectors is Markovian or
not, we have : 8t 2 {0, . . . , T � 1},

⌅t+1 = F (⌅t,�t,⇥
!
t ,⇥ t . . . ,⌅0,�0,⇥

!
0 ,⇥ 0 ,!t) (17)

where !t 2 ⌦ is an exogenous random variable drawn accord-
ing to an exogenous, time-dependent probability distribution
!t ⇠ Pt(·).

III. NEW CONTROL CHALLENGES

In this paper, we focus on the formalisation of decision
making problems within a community of energy prosumers.
Many control algorithms have already been proposed in the
literature however without specifically approaching it with
a community angle (see for example [5]–[7]). By decision
making, we mean that, at every time-step, prosumers have
the opportunity to take several decisions: (i) Adapting their
level of production and/or consumption, (ii) buying/selling to
other prosumers and (iii) buying /selling to the retailer. In the
following, we detail a few optimisation criteria that may be
considered when optimising a community of prosumers.

A. Maximising the distributed production

As briefly discussed previously, it may happen that decen-
tralised production may by curtailed, mainly because load,
storage and distribution network may not be able to host it
on some sunny days. It may make sense to investigate control
strategies dedicated to maximise decentralised production.
More formally, one may seek to optimise, over the time
horizon T , the production of decentralised electricity:
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while satisfying all constraints and time coupling between
time-steps.

Another optimisation criterion that may be of interest is to
optimise distributed production while also limiting losses due
to energy exchanges:
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while satisfying all constraints and time coupling between
time-steps.

B. Optimising overall costs and revenues

Costs and revenues may be globally optimised by optimising
the overall costs and revenues of the prosumer community:
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while satisfying all constraints and coupling between time-
steps.

IV. A FIRST ILLUSTRATION: OPTIMISING PV INJECTION
OVER THE NETWORK WITHOUT STORAGE

In this section, we propose a first illustration of energy ex-
change between prosumers belonging to the same low-voltage
feeder in a deterministic setting. We assume that the low
voltage feeder gathers N houses, each of them being provided
with a photovoltaic installation. We provide an illustration of
the network in Figure 1. The goal of these first experiments
is to control for each time step the active power injected into
the distribution network by each inverter in order to maximise
the overall injected power while avoiding over-voltages:
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subject to operational constraints.
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while satisfying all constraints and time coupling between
time-steps.
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some stochasticity. We define a state vector ⌅t as being
the collection of all (measurable) variables related with the
physical characteristics of the system, and a price vector �t
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We also define two series of matrices. The first series ⇥!t is
related with energy exchanges between prosumers according
the the producer point of view, whereas the second series ⇥ t
is written according to the receiver (or consumer) point of
view:
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Since it may not be easy to assess wether the system defined
through the previously described state vectors is Markovian or
not, we have : 8t 2 {0, . . . , T � 1},
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where !t 2 ⌦ is an exogenous random variable drawn accord-
ing to an exogenous, time-dependent probability distribution
!t ⇠ Pt(·).

III. NEW CONTROL CHALLENGES

In this paper, we focus on the formalisation of decision
making problems within a community of energy prosumers.
Many control algorithms have already been proposed in the
literature however without specifically approaching it with
a community angle (see for example [5]–[7]). By decision
making, we mean that, at every time-step, prosumers have
the opportunity to take several decisions: (i) Adapting their
level of production and/or consumption, (ii) buying/selling to
other prosumers and (iii) buying /selling to the retailer. In the
following, we detail a few optimisation criteria that may be
considered when optimising a community of prosumers.

A. Maximising the distributed production

As briefly discussed previously, it may happen that decen-
tralised production may by curtailed, mainly because load,
storage and distribution network may not be able to host it
on some sunny days. It may make sense to investigate control
strategies dedicated to maximise decentralised production.
More formally, one may seek to optimise, over the time
horizon T , the production of decentralised electricity:
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while satisfying all constraints and time coupling between
time-steps.

Another optimisation criterion that may be of interest is to
optimise distributed production while also limiting losses due
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while satisfying all constraints and time coupling between
time-steps.

B. Optimising overall costs and revenues

Costs and revenues may be globally optimised by optimising
the overall costs and revenues of the prosumer community:

max
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t ,⇥!t ,⇥ t

t 2 {0, . . . , T � 1}
i 2 {1, . . . , N}

E
"
T�1X

t=0

NX

i=1

r(i)
t � c(i)

t

#

(20)

while satisfying all constraints and coupling between time-
steps.

IV. A FIRST ILLUSTRATION: OPTIMISING PV INJECTION
OVER THE NETWORK WITHOUT STORAGE

In this section, we propose a first illustration of energy ex-
change between prosumers belonging to the same low-voltage
feeder in a deterministic setting. We assume that the low
voltage feeder gathers N houses, each of them being provided
with a photovoltaic installation. We provide an illustration of
the network in Figure 1. The goal of these first experiments
is to control for each time step the active power injected into
the distribution network by each inverter in order to maximise
the overall injected power while avoiding over-voltages:

8t
⇣
P (1),⇤
P,t , . . . , P (N),⇤

P,t

⌘
2 argmax

P (1)
P,t ,...,P

(N)
P,t

NX

i=1

P (i)
P,t (21)

subject to operational constraints.

D. Community Dynamics

The variables dynamically evolve over time, also suffering
some stochasticity. We define a state vector ⌅t as being
the collection of all (measurable) variables related with the
physical characteristics of the system, and a price vector �t

gathering all prices : 8t 2 {0, . . . , T � 1},

⌅t =

0

BBBBBBBBBBBBBBBBBBBBBBBBBBBBBB@

P (1)
P,t P (1)

Q,t

P (1),max
P,t P (1),max

Q,t
...

...
P (N)
P,t P (N)

Q,t

P (N),max
P,t P (N),max

Q,t

S(1)
t �(1)

t
...

...
S(N)
t �(N)

t

L(1)
P,t L(1)

Q,t
...

...
L(N)
P,t L(N)

Q,t

D(1)
P,t D(1)

Q,t
...

...
D(N)

P,t D(N)
Q,t

1

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCA

, �t =

0

BBBBBBBBBBBBBBBBBBBBBBBBBB@

Pr(D!1)
t

Pr(1!D)
t

...
Pr(D!N)

t

Pr(N!D)
t

Pr(1!2)
t

Pr(2!1)
t
...

Pr(1!N)
t

Pr(N!1)
t

...
Pr(N�1!N)

t

Pr(N!N�1)
t

1

CCCCCCCCCCCCCCCCCCCCCCCCCCA

(15)

We also define two series of matrices. The first series ⇥!t is
related with energy exchanges between prosumers according
the the producer point of view, whereas the second series ⇥ t
is written according to the receiver (or consumer) point of
view:

⇥!t =
⇣

✓(i!j)
t

⌘

i,j
, ⇥ t =

⇣
✓(i j)
t

⌘

i,j
(16)

Since it may not be easy to assess wether the system defined
through the previously described state vectors is Markovian or
not, we have : 8t 2 {0, . . . , T � 1},

⌅t+1 = F (⌅t,�t,⇥
!
t ,⇥ t . . . ,⌅0,�0,⇥

!
0 ,⇥ 0 ,!t) (17)

where !t 2 ⌦ is an exogenous random variable drawn accord-
ing to an exogenous, time-dependent probability distribution
!t ⇠ Pt(·).

III. NEW CONTROL CHALLENGES

In this paper, we focus on the formalisation of decision
making problems within a community of energy prosumers.
Many control algorithms have already been proposed in the
literature however without specifically approaching it with
a community angle (see for example [5]–[7]). By decision
making, we mean that, at every time-step, prosumers have
the opportunity to take several decisions: (i) Adapting their
level of production and/or consumption, (ii) buying/selling to
other prosumers and (iii) buying /selling to the retailer. In the
following, we detail a few optimisation criteria that may be
considered when optimising a community of prosumers.

A. Maximising the distributed production

As briefly discussed previously, it may happen that decen-
tralised production may by curtailed, mainly because load,
storage and distribution network may not be able to host it
on some sunny days. It may make sense to investigate control
strategies dedicated to maximise decentralised production.
More formally, one may seek to optimise, over the time
horizon T , the production of decentralised electricity:

max
P (i)
P,t, P

(i)
Q,t, L

(i)
P,t, L

(i)
Q,t, S

(i)
t ,⇥!t ,⇥ t

t 2 {0, . . . , T � 1}
i 2 {1, . . . , N}

E
"
T�1X

t=0

NX

i=1

P (i)
P,t

#
(18)

while satisfying all constraints and time coupling between
time-steps.
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We also define two series of matrices. The first series ⇥!t is
related with energy exchanges between prosumers according
the the producer point of view, whereas the second series ⇥ t
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In this paper, we focus on the formalisation of decision
making problems within a community of energy prosumers.
Many control algorithms have already been proposed in the
literature however without specifically approaching it with
a community angle (see for example [5]–[7]). By decision
making, we mean that, at every time-step, prosumers have
the opportunity to take several decisions: (i) Adapting their
level of production and/or consumption, (ii) buying/selling to
other prosumers and (iii) buying /selling to the retailer. In the
following, we detail a few optimisation criteria that may be
considered when optimising a community of prosumers.

A. Maximising the distributed production

As briefly discussed previously, it may happen that decen-
tralised production may by curtailed, mainly because load,
storage and distribution network may not be able to host it
on some sunny days. It may make sense to investigate control
strategies dedicated to maximise decentralised production.
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while satisfying all constraints and time coupling between
time-steps.

Another optimisation criterion that may be of interest is to
optimise distributed production while also limiting losses due
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while satisfying all constraints and time coupling between
time-steps.

B. Optimising overall costs and revenues

Costs and revenues may be globally optimised by optimising
the overall costs and revenues of the prosumer community:
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while satisfying all constraints and coupling between time-
steps.
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Since it may not be easy to assess whether the system
defined through the previously described state vectors is
Markovian or not, we have : 8t 2 {0, . . . , T � 1},
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while satisfying all constraints and time coupling between time
steps.

Another optimisation criterion that may be of interest is to
optimise distributed production while also limiting losses due
to energy exchanges:
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while satisfying all constraints and time coupling between
time-steps.

B. Optimising overall costs and revenues

Costs and revenues may be globally optimised by optimising
the overall costs and revenues of the prosumer community:
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while satisfying all constraints and coupling between time-
steps.

V. CONTROL STRATEGIES

To achieve the objectives formalized in the previous section,
two classes of control strategies compete with each other: a
centralised one and a distributed one. All control strategies
require controllable inverters, batteries, charging stations for
active and reactive power. Controllable loads can also be
considered. More specifically, in a centralised scheme, the
modulation orders are computed by a centralised entity re-
sponsible for gathering the data, computing the orders and
sending them to the prosumers. In a distributed scheme, all
actors compute their own actions based on local objectives and
measurements. The choice for a control strategy depends on
several assumptions regarding the available information on the
network (a detailed electrical model, estimation of the distance
between the prosumer and the distribution transformer, etc.),
the presence of communication (GPRS, PLC, Broadband, etc.),
the presence of storage or, a central controller.

VI. CENTRALISED SCHEMES

A. Technical challenges for building the centralised scheme

A centralised control scheme comprises three different parts.
The first part is all the elements on which it relies for acquiring
information about the system it controls. The second part is
the “brain” of the scheme, something that is usually called
the controller in the control literature. It computes, from the
(history of) information, control actions. The third and last
part is the infrastructure used for sending and applying its
control actions. In the next subsections, we discuss the main
elements of infrastructure that need to be put in place to build
a centralised control scheme.

1) Information gathering: This part is typically composed
of sensors used for measuring physical values, and of a com-
munication infrastructure for sending them to the controller.

A centralised control scheme needs a full knowledge of
the system. Therefore, the infrastructure needs to have: (i)
Sensors able to measure the power consumed by the loads,
the current state of charge of the batteries, estimation of the
maximum production of DERs, etc. and (ii) communication
channels able to transfer these measurements from the houses
to the centralised controller. As communication channels,
different technologies exist. For example, internet connections
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while satisfying all constraints and time coupling between time
steps.

Another optimisation criterion that may be of interest is to
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to energy exchanges:
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while satisfying all constraints and time coupling between
time-steps.

B. Optimising overall costs and revenues
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while satisfying all constraints and coupling between time-
steps.
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To achieve the objectives formalized in the previous section,
two classes of control strategies compete with each other: a
centralised one and a distributed one. All control strategies
require controllable inverters, batteries, charging stations for
active and reactive power. Controllable loads can also be
considered. More specifically, in a centralised scheme, the
modulation orders are computed by a centralised entity re-
sponsible for gathering the data, computing the orders and
sending them to the prosumers. In a distributed scheme, all
actors compute their own actions based on local objectives and
measurements. The choice for a control strategy depends on
several assumptions regarding the available information on the
network (a detailed electrical model, estimation of the distance
between the prosumer and the distribution transformer, etc.),
the presence of communication (GPRS, PLC, Broadband, etc.),
the presence of storage or, a central controller.

VI. CENTRALISED SCHEMES

A. Technical challenges for building the centralised scheme

A centralised control scheme comprises three different parts.
The first part is all the elements on which it relies for acquiring
information about the system it controls. The second part is
the “brain” of the scheme, something that is usually called
the controller in the control literature. It computes, from the
(history of) information, control actions. The third and last
part is the infrastructure used for sending and applying its
control actions. In the next subsections, we discuss the main
elements of infrastructure that need to be put in place to build
a centralised control scheme.

1) Information gathering: This part is typically composed
of sensors used for measuring physical values, and of a com-
munication infrastructure for sending them to the controller.

A centralised control scheme needs a full knowledge of
the system. Therefore, the infrastructure needs to have: (i)
Sensors able to measure the power consumed by the loads,
the current state of charge of the batteries, estimation of the
maximum production of DERs, etc. and (ii) communication
channels able to transfer these measurements from the houses
to the centralised controller. As communication channels,
different technologies exist. For example, internet connections



Maximising PV production

Setting load profiles and PV production patterns 
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Maximising PV production

The basic approach: as soon as an over voltage is observed, the PV production 
is 100% curtailed for a few seconds. 
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Maximising PV production

The centralised controlled approach: optimise the production over the whole feeder in a 
centralised way. A home-made OPF solution has been specifically designed for this 
network. 

Basic approach, PV production loss over one day: 31.63 kWh  
Centralised community approach, PV production loss over one day: 21.38 kWh
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Including batteries into the story: from 
centralised to decentralised solutions

A centralised strategy 

We use the forward backward sweep optimal power flow strategy proposed 
in [Fortenbacher et al.] 

We obtain both a sizing and centralised planning strategy, for a given load 
and solar irradiance scenario 

Optimal Sizing and Placement of Distributed Storage in Low Voltage Networks. 
Philipp Fortenbacher Martin Zellner Göran Andersson. IEEE Power Systems 
Computation Conference (PSCC), 2016.



Including batteries into the story: from 
centralised to decentralised solutions

Technical challenges for building centralised strategies 

Information gathering 

Need for a centralised controller for processing information 

Concretising computational results into applied actions



Including batteries into the story: from 
centralised to decentralised solutions

We propose a data-driven, « learning approach »: 

1. Built a set of centralised solutions 

2. Generate learning (input, output) samples, where the input is made 
from local indicators, and the output is a decision that should be 
applied locally 

3. Learn a strategy from the samples 

• Imitative learning



Building a set of data

First, generate scenarios: a solar irradiance scenarios, a set of load scenarios 
(for each prosumer). 

Then, solve the pairs {solar irradiance, load profiles} (using, for instance, a 
forward backward sweep power flow approach) 

From this time series of data, on can extract a series of local data, i.e. relative to 
one single prosumer (i) : 

in Figure 3 a graph of the evolution of the voltage for all
buses of the feeder. One can observe that the production of

Time
00:00 03:00 06:00 09:00 12:00 15:00 18:00 21:00 00:00

V
o
lta

g
e
 (

p
.u

.)

1.03

1.04

1.05

1.06

1.07

1.08

1.09

1.1

data1
data2
data3
data4
data5
data6
data7
data8
data9
data10
data11
data12
data13
data14
data15
data16
data17
data18

Fig. 3. Illustration of the voltage potential over 24 hours.

houses located at the end of the feeder (i.e., far from the
transformer) is modulated in order to avoid over-voltages.
Even if the community still suffers partial curtailment, it has
to be compared with the complete disconnection of PV units
when overvoltages are observed. In the centralized community
strategy, the total curtailment was 21.38 kWh, whereas the
complete disconnection of inverters observing an overvoltage
at their bus would lead to a curtailment of 31.63 kWh.

VII. DISTRIBUTED SCHEMES

In the previous section, we have proposed a centralised
control scheme to suppress overvoltages in the community.
As specified in Section VI-A, one of the main shortcomings
of centralised controllers is their cost of implementation and
maintenance. They indeed require to build and maintain a
costly communication infrastructure between the houses and
the centralised controllers. They also require a detailed model
of the low-voltage network that may be expensive to get.
Therefore, it would be interesting to design other types of
control schemes that would be much cheaper. Ideally, these
schemes should not rely on an expensive communication
architecture and be able to work even without knowing a
detailed model of the low-voltage network.

In this section we investigate how to design distributed con-
trol schemes that may contribute reaching (at least partially)
the objectives of the community. Our strategy is to resort to
machine learning techniques that may extract, from centralized
solution(s), decision making patterns to be applied locally,
i.e. by only measuring features about the (local) prosumer.
Our machine learning approach is an imitative learning-type
approach where we learn four different regressors from data.
These four regressors are dedicated to learning the optimal
levels of active power production, reactive power production,
power injected into the storage device and power drawn from
the storage device to be applied by prosumer (i).

A. Generating data for solving machine learning tasks

First, for each prosumer i 2 {1, . . . , N}, generate a set of
load profiles L(i)

P,t, t 2 {1, . . . , T} and maximal production
potentials P (i),max

P,t , t 2 {1, . . . , T}, associated with a time
series of price vectors �t, t 2 {1, . . . , T}. We consider the
optimisation criterion described in Equation 20. This power
flow problem can be solved using, for instance, the FBS-OPF
algorithm proposed by [3]. Solving one such problem outputs
a time series of data, corresponding to the evolution of all the
indicators over the time horizon:

⇥
⌅⇤

0, . . . ,⌅
⇤
T�1

⇤
(22)

From this time series of data, one can extract a series of local
data, i.e. relative to one single prosumer (i):

h
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where 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},
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From these extractions, we generate the following learning
sets:

• For generating a learning set dedicated to learning how to
optimize the level of active power production, we process
the whole variables ⌅(i),⇤

t into the following set of (input,
output) pairs:

LP =
n⇣

ini,t
P , outi,tP

⌘oi=N,t=T�1

i=1,t=0
(25)

where, 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},

ini,t
P =

⇣
i, |v(i)

t |, arg(v(i),⇤
t ), �t, �(i),⇤

t , L(i)
P,t, P (i),max

P,t

⌘
(26)

outi,tP = P (i),⇤
P,t (27)

where:
– i : id number of the bus
– |v(i)

t | : magnitude of the voltage at bus i at time step
t

– arg(v(i)
t ) : phase of the voltage at bus i at time step

t
– �t : electricity price at time step t, considered as

being unique in the whole feeder
– �(i)

t : level of charge of the storage of bus i at time
step t

– L(i)
P,t : load consumption at bus i at time step t

– P (i),max
P,t : maximal production potential at bus i at

time step t

in Figure 3 a graph of the evolution of the voltage for all
buses of the feeder. One can observe that the production of
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Fig. 3. Illustration of the voltage potential over 24 hours.

houses located at the end of the feeder (i.e., far from the
transformer) is modulated in order to avoid over-voltages.
Even if the community still suffers partial curtailment, it has
to be compared with the complete disconnection of PV units
when overvoltages are observed. In the centralized community
strategy, the total curtailment was 21.38 kWh, whereas the
complete disconnection of inverters observing an overvoltage
at their bus would lead to a curtailment of 31.63 kWh.

VII. DISTRIBUTED SCHEMES

In the previous section, we have proposed a centralised
control scheme to suppress overvoltages in the community.
As specified in Section VI-A, one of the main shortcomings
of centralised controllers is their cost of implementation and
maintenance. They indeed require to build and maintain a
costly communication infrastructure between the houses and
the centralised controllers. They also require a detailed model
of the low-voltage network that may be expensive to get.
Therefore, it would be interesting to design other types of
control schemes that would be much cheaper. Ideally, these
schemes should not rely on an expensive communication
architecture and be able to work even without knowing a
detailed model of the low-voltage network.

In this section we investigate how to design distributed con-
trol schemes that may contribute reaching (at least partially)
the objectives of the community. Our strategy is to resort to
machine learning techniques that may extract, from centralized
solution(s), decision making patterns to be applied locally,
i.e. by only measuring features about the (local) prosumer.
Our machine learning approach is an imitative learning-type
approach where we learn four different regressors from data.
These four regressors are dedicated to learning the optimal
levels of active power production, reactive power production,
power injected into the storage device and power drawn from
the storage device to be applied by prosumer (i).

A. Generating data for solving machine learning tasks

First, for each prosumer i 2 {1, . . . , N}, generate a set of
load profiles L(i)

P,t, t 2 {1, . . . , T } and maximal production
potentials P (i),max

P,t , t 2 {1, . . . , T }, associated with a time
series of price vectors �t, t 2 {1, . . . , T }. We consider the
optimisation criterion described in Equation 20. This power
flow problem can be solved using, for instance, the FBS-OPF
algorithm proposed by [3]. Solving one such problem outputs
a time series of data, corresponding to the evolution of all the
indicators over the time horizon:
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From this time series of data, one can extract a series of local
data, i.e. relative to one single prosumer (i):
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From these extractions, we generate the following learning
sets:

• For generating a learning set dedicated to learning how to
optimize the level of active power production, we process
the whole variables ⌅(i),⇤

t into the following set of (input,
output) pairs:

LP =
n⇣

ini,t
P , outi,t

P

⌘oi=N,t=T �1

i=1,t=0
(25)

where, 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},
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t |, arg(v(i),⇤
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outi,t
P = P (i),⇤

P,t (27)

where:
– i : id number of the bus
– |v(i)

t | : magnitude of the voltage at bus i at time step
t

– arg(v(i)
t ) : phase of the voltage at bus i at time step

t
– �t : electricity price at time step t, considered as

being unique in the whole feeder
– �(i)

t : level of charge of the storage of bus i at time
step t

– L(i)
P,t : load consumption at bus i at time step t

– P (i),max
P,t : maximal production potential at bus i at

time step t

in Figure 3 a graph of the evolution of the voltage for all
buses of the feeder. One can observe that the production of
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Fig. 3. Illustration of the voltage potential over 24 hours.

houses located at the end of the feeder (i.e., far from the
transformer) is modulated in order to avoid over-voltages.
Even if the community still suffers partial curtailment, it has
to be compared with the complete disconnection of PV units
when overvoltages are observed. In the centralized community
strategy, the total curtailment was 21.38 kWh, whereas the
complete disconnection of inverters observing an overvoltage
at their bus would lead to a curtailment of 31.63 kWh.

VII. DISTRIBUTED SCHEMES

In the previous section, we have proposed a centralised
control scheme to suppress overvoltages in the community.
As specified in Section VI-A, one of the main shortcomings
of centralised controllers is their cost of implementation and
maintenance. They indeed require to build and maintain a
costly communication infrastructure between the houses and
the centralised controllers. They also require a detailed model
of the low-voltage network that may be expensive to get.
Therefore, it would be interesting to design other types of
control schemes that would be much cheaper. Ideally, these
schemes should not rely on an expensive communication
architecture and be able to work even without knowing a
detailed model of the low-voltage network.

In this section we investigate how to design distributed con-
trol schemes that may contribute reaching (at least partially)
the objectives of the community. Our strategy is to resort to
machine learning techniques that may extract, from centralized
solution(s), decision making patterns to be applied locally,
i.e. by only measuring features about the (local) prosumer.
Our machine learning approach is an imitative learning-type
approach where we learn four different regressors from data.
These four regressors are dedicated to learning the optimal
levels of active power production, reactive power production,
power injected into the storage device and power drawn from
the storage device to be applied by prosumer (i).

A. Generating data for solving machine learning tasks

First, for each prosumer i 2 {1, . . . , N}, generate a set of
load profiles L(i)

P,t, t 2 {1, . . . , T } and maximal production
potentials P (i),max

P,t , t 2 {1, . . . , T }, associated with a time
series of price vectors �t, t 2 {1, . . . , T }. We consider the
optimisation criterion described in Equation 20. This power
flow problem can be solved using, for instance, the FBS-OPF
algorithm proposed by [3]. Solving one such problem outputs
a time series of data, corresponding to the evolution of all the
indicators over the time horizon:
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From this time series of data, one can extract a series of local
data, i.e. relative to one single prosumer (i):
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From these extractions, we generate the following learning
sets:

• For generating a learning set dedicated to learning how to
optimize the level of active power production, we process
the whole variables ⌅(i),⇤

t into the following set of (input,
output) pairs:

LP =
n⇣

ini,t
P , outi,t

P
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(25)
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where:
– i : id number of the bus
– |v(i)

t | : magnitude of the voltage at bus i at time step
t

– arg(v(i)
t ) : phase of the voltage at bus i at time step

t
– �t : electricity price at time step t, considered as

being unique in the whole feeder
– �(i)

t : level of charge of the storage of bus i at time
step t

– L(i)
P,t : load consumption at bus i at time step t
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P,t : maximal production potential at bus i at

time step t
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Learning from data - Imitative learning 

We propose to use a machine learning approach 

Machine learning is about extracting pattern from data 

From the sample of data  
we learning a mapping state -> action 

Here, we adopt a slightly indirect approach by learning 4 different regressors: 

Active power 

Reactive power 

Charging battery 

Discharging the battery

L = (s(i), a(i))
N

i=1



Building 4 regressors from data  
(Active & reactive power, charge & 
discharge)
Data set: 

in Figure 3 a graph of the evolution of the voltage for all
buses of the feeder. One can observe that the production of
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Fig. 3. Illustration of the voltage potential over 24 hours.

houses located at the end of the feeder (i.e., far from the
transformer) is modulated in order to avoid over-voltages.
Even if the community still suffers partial curtailment, it has
to be compared with the complete disconnection of PV units
when overvoltages are observed. In the centralized community
strategy, the total curtailment was 21.38 kWh, whereas the
complete disconnection of inverters observing an overvoltage
at their bus would lead to a curtailment of 31.63 kWh.

VII. DISTRIBUTED SCHEMES

In the previous section, we have proposed a centralised
control scheme to suppress overvoltages in the community.
As specified in Section VI-A, one of the main shortcomings
of centralised controllers is their cost of implementation and
maintenance. They indeed require to build and maintain a
costly communication infrastructure between the houses and
the centralised controllers. They also require a detailed model
of the low-voltage network that may be expensive to get.
Therefore, it would be interesting to design other types of
control schemes that would be much cheaper. Ideally, these
schemes should not rely on an expensive communication
architecture and be able to work even without knowing a
detailed model of the low-voltage network.

In this section we investigate how to design distributed con-
trol schemes that may contribute reaching (at least partially)
the objectives of the community. Our strategy is to resort to
machine learning techniques that may extract, from centralized
solution(s), decision making patterns to be applied locally,
i.e. by only measuring features about the (local) prosumer.
Our machine learning approach is an imitative learning-type
approach where we learn four different regressors from data.
These four regressors are dedicated to learning the optimal
levels of active power production, reactive power production,
power injected into the storage device and power drawn from
the storage device to be applied by prosumer (i).

A. Generating data for solving machine learning tasks

First, for each prosumer i 2 {1, . . . , N}, generate a set of
load profiles L(i)

P,t, t 2 {1, . . . , T } and maximal production
potentials P (i),max

P,t , t 2 {1, . . . , T }, associated with a time
series of price vectors �t, t 2 {1, . . . , T }. We consider the
optimisation criterion described in Equation 20. This power
flow problem can be solved using, for instance, the FBS-OPF
algorithm proposed by [3]. Solving one such problem outputs
a time series of data, corresponding to the evolution of all the
indicators over the time horizon:
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From this time series of data, one can extract a series of local
data, i.e. relative to one single prosumer (i):
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From these extractions, we generate the following learning
sets:

• For generating a learning set dedicated to learning how to
optimize the level of active power production, we process
the whole variables ⌅(i),⇤

t into the following set of (input,
output) pairs:

LP =
n⇣
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P , outi,t

P
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where, 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},
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outi,t
P = P (i),⇤
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where:
– i : id number of the bus
– |v(i)

t | : magnitude of the voltage at bus i at time step
t

– arg(v(i)
t ) : phase of the voltage at bus i at time step

t
– �t : electricity price at time step t, considered as

being unique in the whole feeder
– �(i)

t : level of charge of the storage of bus i at time
step t

– L(i)
P,t : load consumption at bus i at time step t

– P (i),max
P,t : maximal production potential at bus i at

time step t

in Figure 3 a graph of the evolution of the voltage for all
buses of the feeder. One can observe that the production of
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Fig. 3. Illustration of the voltage potential over 24 hours.

houses located at the end of the feeder (i.e., far from the
transformer) is modulated in order to avoid over-voltages.
Even if the community still suffers partial curtailment, it has
to be compared with the complete disconnection of PV units
when overvoltages are observed. In the centralized community
strategy, the total curtailment was 21.38 kWh, whereas the
complete disconnection of inverters observing an overvoltage
at their bus would lead to a curtailment of 31.63 kWh.

VII. DISTRIBUTED SCHEMES

In the previous section, we have proposed a centralised
control scheme to suppress overvoltages in the community.
As specified in Section VI-A, one of the main shortcomings
of centralised controllers is their cost of implementation and
maintenance. They indeed require to build and maintain a
costly communication infrastructure between the houses and
the centralised controllers. They also require a detailed model
of the low-voltage network that may be expensive to get.
Therefore, it would be interesting to design other types of
control schemes that would be much cheaper. Ideally, these
schemes should not rely on an expensive communication
architecture and be able to work even without knowing a
detailed model of the low-voltage network.

In this section we investigate how to design distributed con-
trol schemes that may contribute reaching (at least partially)
the objectives of the community. Our strategy is to resort to
machine learning techniques that may extract, from centralized
solution(s), decision making patterns to be applied locally,
i.e. by only measuring features about the (local) prosumer.
Our machine learning approach is an imitative learning-type
approach where we learn four different regressors from data.
These four regressors are dedicated to learning the optimal
levels of active power production, reactive power production,
power injected into the storage device and power drawn from
the storage device to be applied by prosumer (i).

A. Generating data for solving machine learning tasks

First, for each prosumer i 2 {1, . . . , N}, generate a set of
load profiles L(i)

P,t, t 2 {1, . . . , T } and maximal production
potentials P (i),max

P,t , t 2 {1, . . . , T }, associated with a time
series of price vectors �t, t 2 {1, . . . , T }. We consider the
optimisation criterion described in Equation 20. This power
flow problem can be solved using, for instance, the FBS-OPF
algorithm proposed by [3]. Solving one such problem outputs
a time series of data, corresponding to the evolution of all the
indicators over the time horizon:
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From this time series of data, one can extract a series of local
data, i.e. relative to one single prosumer (i):
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From these extractions, we generate the following learning
sets:

• For generating a learning set dedicated to learning how to
optimize the level of active power production, we process
the whole variables ⌅(i),⇤

t into the following set of (input,
output) pairs:

LP =
n⇣

ini,t
P , outi,t

P
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where, 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},
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outi,t
P = P (i),⇤

P,t (27)

where:
– i : id number of the bus
– |v(i)

t | : magnitude of the voltage at bus i at time step
t

– arg(v(i)
t ) : phase of the voltage at bus i at time step

t
– �t : electricity price at time step t, considered as

being unique in the whole feeder
– �(i)

t : level of charge of the storage of bus i at time
step t

– L(i)
P,t : load consumption at bus i at time step t

– P (i),max
P,t : maximal production potential at bus i at

time step t

we provide a graph of the evolution of the voltage for all
buses of the feeder. One can observe that the production of
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Fig. 3. Illustration of the voltage potential over 24 hours.

houses located at the end of the feeder (i.e., far from the
transformer) is modulated in order to avoid over-voltages.
Even if the community still suffers partial curtailment, it has
to be compared with the complete disconnection of PV units
when overvoltages are observed. In the centralised community
strategy, the total curtailment was 21.38 kWh, whereas the
complete disconnection of inverters observing an overvoltage
at their bus would lead to a curtailment of 31.63 kWh.

VII. DISTRIBUTED SCHEMES

In the previous section, we have proposed a centralised
control scheme to suppress overvoltages in the community.
As specified in Section VI-A, one of the main shortcomings
of centralised controllers is their cost of implementation and
maintenance. They indeed require building and maintaining a
costly communication infrastructure between the houses and
the centralised controllers. They also require a detailed model
of the low-voltage network that may be expensive to obtain.
Therefore, it would be interesting to design other types of
control schemes that would be much cheaper. Ideally, these
schemes should not rely on an expensive communication
architecture and should be able to work even without knowing
a detailed model of the low-voltage network.

In this section, we investigate how to design distributed con-
trol schemes that may contribute to reaching (at least partially)
the objectives of the community. Our strategy is to resort to
machine learning techniques that may extract, from centralised
solution(s), decision making patterns to be applied locally,
i.e. by only measuring features about the (local) prosumer.
Our machine learning approach is an imitative learning-type
approach where we learn four different regressors from data.
These four regressors are dedicated to learning the optimal
levels of active power production, reactive power production,
power injected into the storage device and power drawn from
the storage device to be applied by prosumer (i).

A. Generating data for solving machine learning tasks

First, for each prosumer i 2 {1, . . . , N}, we generate a set
of load profiles L(i)

P,t, t 2 {1, . . . , T } and maximal production
potentials P (i),max

P,t , t 2 {1, . . . , T }, associated with a time
series of price vectors �t, t 2 {1, . . . , T }. We consider the
optimisation criterion described in Equation 20. This power
flow problem can be solved using, for instance, the FBS-OPF
algorithm proposed by [3]. Solving one such problem outputs
a time series of data, corresponding to the evolution of all the
indicators over the time horizon:
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From this time series of data, one can extract a series of local
data, i.e. relative to one single prosumer (i):
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From these extractions, we generate the following learning
sets:

• For generating a learning set dedicated to learning how
to optimize the level of active power production, we
process the variables ⌅(i),⇤

t into the following set of
(input, output) pairs:

LP =
n⇣

ini,t
P , outi,t

P
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where, 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},
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outi,t
P = P (i),⇤

P,t (27)

where:
– i : id number of the bus
– |v(i)

t | : magnitude of the voltage at bus i at time step
t

– arg(v(i)
t ) : phase of the voltage at bus i at time step t

– �t : electricity price at time step t, considered as being
unique in the whole feeder

– �(i)
t : level of charge of the storage of bus i at time

step t
– L(i)

P,t : load consumption at bus i at time step t

– P (i),max
P,t : maximal production potential at bus i at

time step t

• For generating a learning set dedicated to learning how
to optimize the level of reactive power production, we

we provide a graph of the evolution of the voltage for all
buses of the feeder. One can observe that the production of
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Fig. 3. Illustration of the voltage potential over 24 hours.

houses located at the end of the feeder (i.e., far from the
transformer) is modulated in order to avoid over-voltages.
Even if the community still suffers partial curtailment, it has
to be compared with the complete disconnection of PV units
when overvoltages are observed. In the centralised community
strategy, the total curtailment was 21.38 kWh, whereas the
complete disconnection of inverters observing an overvoltage
at their bus would lead to a curtailment of 31.63 kWh.

VII. DISTRIBUTED SCHEMES

In the previous section, we have proposed a centralised
control scheme to suppress overvoltages in the community.
As specified in Section VI-A, one of the main shortcomings
of centralised controllers is their cost of implementation and
maintenance. They indeed require building and maintaining a
costly communication infrastructure between the houses and
the centralised controllers. They also require a detailed model
of the low-voltage network that may be expensive to obtain.
Therefore, it would be interesting to design other types of
control schemes that would be much cheaper. Ideally, these
schemes should not rely on an expensive communication
architecture and should be able to work even without knowing
a detailed model of the low-voltage network.

In this section, we investigate how to design distributed con-
trol schemes that may contribute to reaching (at least partially)
the objectives of the community. Our strategy is to resort to
machine learning techniques that may extract, from centralised
solution(s), decision making patterns to be applied locally,
i.e. by only measuring features about the (local) prosumer.
Our machine learning approach is an imitative learning-type
approach where we learn four different regressors from data.
These four regressors are dedicated to learning the optimal
levels of active power production, reactive power production,
power injected into the storage device and power drawn from
the storage device to be applied by prosumer (i).

A. Generating data for solving machine learning tasks

First, for each prosumer i 2 {1, . . . , N}, we generate a set
of load profiles L(i)

P,t, t 2 {1, . . . , T } and maximal production
potentials P (i),max

P,t , t 2 {1, . . . , T }, associated with a time
series of price vectors �t, t 2 {1, . . . , T }. We consider the
optimisation criterion described in Equation 20. This power
flow problem can be solved using, for instance, the FBS-OPF
algorithm proposed by [3]. Solving one such problem outputs
a time series of data, corresponding to the evolution of all the
indicators over the time horizon:
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From this time series of data, one can extract a series of local
data, i.e. relative to one single prosumer (i):
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From these extractions, we generate the following learning
sets:

• For generating a learning set dedicated to learning how
to optimize the level of active power production, we
process the variables ⌅(i),⇤

t into the following set of
(input, output) pairs:

LP =
n⇣

ini,t
P , outi,t

P
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i=1,t=0
(25)

where, 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},
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where:
– i : id number of the bus
– |v(i)

t | : magnitude of the voltage at bus i at time step
t

– arg(v(i)
t ) : phase of the voltage at bus i at time step t

– �t : electricity price at time step t, considered as being
unique in the whole feeder

– �(i)
t : level of charge of the storage of bus i at time

step t
– L(i)

P,t : load consumption at bus i at time step t

– P (i),max
P,t : maximal production potential at bus i at

time step t

• For generating a learning set dedicated to learning how
to optimize the level of reactive power production, we

process the whole variables ⌅(i),⇤
t into the following set

of (input, output) pairs:
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where, 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},

ini,t
Q = = ini,t

P

outi,t
Q = = P (i),⇤
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• For generating a learning set dedicated to learning how
to optimize the level of power injected into the battery,
we process the whole variables ⌅(i),⇤

t into the following
set of (input, output) pairs:
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where, 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},
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• For generating a learning set dedicated to learning how
to optimize the level of power injected into the battery,
we process the whole variables ⌅(i),⇤

t into the following
set of (input, output) pairs:
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The machine learning task is performed using Extremely
Randomized Trees [12] using the Scikit-learn library [13].

B. Post-processing the predictions

When the regressors learned from data are used to set
the value of a decision variable inside the community, their
output needs to be post-processed, otherwise it could create
a violation of physical constraints (e.g. the predicted value of
power drawn from the storage is greater than the power that
the storage can offer). In that case, the value is corrected and
set equal to the limit that it crossed (e.g. the power drawn
from the storage becomes equal to the maximum power that
the storage can offer).

C. Applying the learned strategies in different load, solar

production and prices configurations

A new set of load profile time series L(i)
P,t, t 2 {1, . . . , T }

and maximal production potentials time series P (i),max
P,t , t 2

{1, . . . , T }, associated with a new time series of price vectors
�t, t 2 {1, . . . , T } are generated for each prosumer i 2
{1, . . . , N}. Starting from the initial time step, at every t, the
required inputs are passed to the regressors for each prosumer
and the outputs (after a post-processing step) are used to set
the value of their actions. The power flow problem is solved
every time to check the voltages, the net power exchanged
with the main grid and respect of the physical constraints.

D. Empirical illustration

In this section, we compare the performance of the learned
strategies in a deterministic setting with two other strategies:
(i) the centralised optimised strategy as defined in [3], and
(ii) another decentralised strategy relying on a predetermined,
thresholds-based, decision rule. This second decentralised
strategy is designed so that it ensures the safety of the system,
and then, tries to restrain the overall costs of the community.
The first point of this second decentralised algorithm is, thus,
to check if there is a risk of overvoltages or undervoltages
at the bus and, in this case, to orient the actions of that
prosumer to avoid it (fully charging/discharging the storage
and maximising/minimising the power production). In the case
where the safety of the grid seems ensured, the decisions are
imposed based on the price of the electricity at that time
step (when it is above/under a predetermined price, impose
a predetermined prosumer’s action). It is certainly simplistic,
but it has the merit of providing a comparison base. Details
about this decision rule can be found in Appendix.

As a comparison metric, we consider the overall costs that
the community incurs (in the same overall environment, i.e.
same loads, solar production, PV and batteries sizes, prices)
exchanging power with the main grid during an entire year
(T = 8760, one time-step per hour during one year). The
comparison is made in an environment where loads, solar
production and prices are not the same as the one from which
the learned strategies were built. As expected, the centralised
model is able to achieve the lowest costs, equal to 641.70 e. If
we adopt the predicted actions made by the learned regressors,
the community meets a total cost of 1549.70 e, a result that
seems expensive when compared to the centralised model one,
but it becomes remarkable when we consider that the ”rule of
thumb” algorithm produces an expense equal to 3276 e.

VIII. ONE STEP FURTHER: TAKING INTO ACCOUNT THE
THREE PHASES

The mathematical formalisation presented in this paper
considers a balanced operation of the network. Indeed, the
power exchanges between the prosumers do not take into con-
sideration the phase to which they are connected. It considers
only one value for active and reactive power per dwelling.
However, low-voltage distribution networks are intrinsically
unbalanced because even if a prosumer has a three-phase
connection to the grid, house appliances are mainly single
phase. Our concern is the relevance of exchanging powers
between members of the electricity community, that are not
connected to the same phase. Physically, current from the
DER would flow to the distribution transformer and out of
the community while current to supply the load would flow
from the distribution transformer. While this may reduce the
losses to some extent because power does not flow from
the transmission network, controlling the community in this
fashion could further unbalance the network, and result in
the violation of voltage constraints and a reduction of the
hosting capacity of the network. One solution would be to
divide the community into three groups: one per phase and
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The machine learning task is performed using Extremely
Randomized Trees [12] using the Scikit-learn library [13].

B. Post-processing the predictions

When the regressors learned from data are used to set
the value of a decision variable inside the community, their
output needs to be post-processed, otherwise it could create
a violation of physical constraints (e.g. the predicted value of
power drawn from the storage is greater than the power that
the storage can offer). In that case, the value is corrected and
set equal to the limit that it crossed (e.g. the power drawn
from the storage becomes equal to the maximum power that
the storage can offer).

C. Applying the learned strategies in different load, solar

production and prices configurations

A new set of load profile time series L(i)
P,t, t 2 {1, . . . , T }

and maximal production potentials time series P (i),max
P,t , t 2

{1, . . . , T }, associated with a new time series of price vectors
�t, t 2 {1, . . . , T } are generated for each prosumer i 2
{1, . . . , N}. Starting from the initial time step, at every t, the
required inputs are passed to the regressors for each prosumer
and the outputs (after a post-processing step) are used to set
the value of their actions. The power flow problem is solved
every time to check the voltages, the net power exchanged
with the main grid and respect of the physical constraints.

D. Empirical illustration

In this section, we compare the performance of the learned
strategies in a deterministic setting with two other strategies:
(i) the centralised optimised strategy as defined in [3], and
(ii) another decentralised strategy relying on a predetermined,
thresholds-based, decision rule. This second decentralised
strategy is designed so that it ensures the safety of the system,
and then, tries to restrain the overall costs of the community.
The first point of this second decentralised algorithm is, thus,
to check if there is a risk of overvoltages or undervoltages
at the bus and, in this case, to orient the actions of that
prosumer to avoid it (fully charging/discharging the storage
and maximising/minimising the power production). In the case
where the safety of the grid seems ensured, the decisions are
imposed based on the price of the electricity at that time
step (when it is above/under a predetermined price, impose
a predetermined prosumer’s action). It is certainly simplistic,
but it has the merit of providing a comparison base. Details
about this decision rule can be found in Appendix.

As a comparison metric, we consider the overall costs that
the community incurs (in the same overall environment, i.e.
same loads, solar production, PV and batteries sizes, prices)
exchanging power with the main grid during an entire year
(T = 8760, one time-step per hour during one year). The
comparison is made in an environment where loads, solar
production and prices are not the same as the one from which
the learned strategies were built. As expected, the centralised
model is able to achieve the lowest costs, equal to 641.70 e. If
we adopt the predicted actions made by the learned regressors,
the community meets a total cost of 1549.70 e, a result that
seems expensive when compared to the centralised model one,
but it becomes remarkable when we consider that the ”rule of
thumb” algorithm produces an expense equal to 3276 e.

VIII. ONE STEP FURTHER: TAKING INTO ACCOUNT THE
THREE PHASES

The mathematical formalisation presented in this paper
considers a balanced operation of the network. Indeed, the
power exchanges between the prosumers do not take into con-
sideration the phase to which they are connected. It considers
only one value for active and reactive power per dwelling.
However, low-voltage distribution networks are intrinsically
unbalanced because even if a prosumer has a three-phase
connection to the grid, house appliances are mainly single
phase. Our concern is the relevance of exchanging powers
between members of the electricity community, that are not
connected to the same phase. Physically, current from the
DER would flow to the distribution transformer and out of
the community while current to supply the load would flow
from the distribution transformer. While this may reduce the
losses to some extent because power does not flow from
the transmission network, controlling the community in this
fashion could further unbalance the network, and result in
the violation of voltage constraints and a reduction of the
hosting capacity of the network. One solution would be to
divide the community into three groups: one per phase and
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The machine learning task is performed using Extremely
Randomized Trees [12] using the Scikit-learn library [13].

B. Post-processing the predictions

When the regressors learned from data are used to set
the value of a decision variable inside the community, their
output needs to be post-processed, otherwise it could create
a violation of physical constraints (e.g. the predicted value of
power drawn from the storage is greater than the power that
the storage can offer). In that case, the value is corrected and
set equal to the limit that it crossed (e.g. the power drawn
from the storage becomes equal to the maximum power that
the storage can offer).

C. Applying the learned strategies in different load, solar

production and prices configurations

A new set of load profile time series L(i)
P,t, t 2 {1, . . . , T }

and maximal production potentials time series P (i),max
P,t , t 2

{1, . . . , T }, associated with a new time series of price vectors
�t, t 2 {1, . . . , T } are generated for each prosumer i 2
{1, . . . , N}. Starting from the initial time step, at every t, the
required inputs are passed to the regressors for each prosumer
and the outputs (after a post-processing step) are used to set
the value of their actions. The power flow problem is solved
every time to check the voltages, the net power exchanged
with the main grid and respect of the physical constraints.

D. Empirical illustration

In this section, we compare the performance of the learned
strategies in a deterministic setting with two other strategies:
(i) the centralised optimised strategy as defined in [3], and
(ii) another decentralised strategy relying on a predetermined,
thresholds-based, decision rule. This second decentralised
strategy is designed so that it ensures the safety of the system,
and then, tries to restrain the overall costs of the community.
The first point of this second decentralised algorithm is, thus,
to check if there is a risk of overvoltages or undervoltages
at the bus and, in this case, to orient the actions of that
prosumer to avoid it (fully charging/discharging the storage
and maximising/minimising the power production). In the case
where the safety of the grid seems ensured, the decisions are
imposed based on the price of the electricity at that time
step (when it is above/under a predetermined price, impose
a predetermined prosumer’s action). It is certainly simplistic,
but it has the merit of providing a comparison base. Details
about this decision rule can be found in Appendix.

As a comparison metric, we consider the overall costs that
the community incurs (in the same overall environment, i.e.
same loads, solar production, PV and batteries sizes, prices)
exchanging power with the main grid during an entire year
(T = 8760, one time-step per hour during one year). The
comparison is made in an environment where loads, solar
production and prices are not the same as the one from which
the learned strategies were built. As expected, the centralised
model is able to achieve the lowest costs, equal to 641.70 e. If
we adopt the predicted actions made by the learned regressors,
the community meets a total cost of 1549.70 e, a result that
seems expensive when compared to the centralised model one,
but it becomes remarkable when we consider that the ”rule of
thumb” algorithm produces an expense equal to 3276 e.

VIII. ONE STEP FURTHER: TAKING INTO ACCOUNT THE
THREE PHASES

The mathematical formalisation presented in this paper
considers a balanced operation of the network. Indeed, the
power exchanges between the prosumers do not take into con-
sideration the phase to which they are connected. It considers
only one value for active and reactive power per dwelling.
However, low-voltage distribution networks are intrinsically
unbalanced because even if a prosumer has a three-phase
connection to the grid, house appliances are mainly single
phase. Our concern is the relevance of exchanging powers
between members of the electricity community, that are not
connected to the same phase. Physically, current from the
DER would flow to the distribution transformer and out of
the community while current to supply the load would flow
from the distribution transformer. While this may reduce the
losses to some extent because power does not flow from
the transmission network, controlling the community in this
fashion could further unbalance the network, and result in
the violation of voltage constraints and a reduction of the
hosting capacity of the network. One solution would be to
divide the community into three groups: one per phase and
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The machine learning task is performed using Extremely
Randomized Trees [12] using the Scikit-learn library [13].

B. Post-processing the predictions

When the regressors learned from data are used to set
the value of a decision variable inside the community, their
output needs to be post-processed, otherwise it could create
a violation of physical constraints (e.g. the predicted value of
power drawn from the storage is greater than the power that
the storage can offer). In that case, the value is corrected and
set equal to the limit that it crossed (e.g. the power drawn
from the storage becomes equal to the maximum power that
the storage can offer).

C. Applying the learned strategies in different load, solar

production and prices configurations

A new set of load profile time series L(i)
P,t, t 2 {1, . . . , T }

and maximal production potentials time series P (i),max
P,t , t 2

{1, . . . , T }, associated with a new time series of price vectors
�t, t 2 {1, . . . , T } are generated for each prosumer i 2
{1, . . . , N}. Starting from the initial time step, at every t, the
required inputs are passed to the regressors for each prosumer
and the outputs (after a post-processing step) are used to set
the value of their actions. The power flow problem is solved
every time to check the voltages, the net power exchanged
with the main grid and respect of the physical constraints.

D. Empirical illustration

In this section, we compare the performance of the learned
strategies in a deterministic setting with two other strategies:
(i) the centralised optimised strategy as defined in [3], and
(ii) another decentralised strategy relying on a predetermined,
thresholds-based, decision rule. This second decentralised
strategy is designed so that it ensures the safety of the system,
and then, tries to restrain the overall costs of the community.
The first point of this second decentralised algorithm is, thus,
to check if there is a risk of overvoltages or undervoltages
at the bus and, in this case, to orient the actions of that
prosumer to avoid it (fully charging/discharging the storage
and maximising/minimising the power production). In the case
where the safety of the grid seems ensured, the decisions are
imposed based on the price of the electricity at that time
step (when it is above/under a predetermined price, impose
a predetermined prosumer’s action). It is certainly simplistic,
but it has the merit of providing a comparison base. Details
about this decision rule can be found in Appendix.

As a comparison metric, we consider the overall costs that
the community incurs (in the same overall environment, i.e.
same loads, solar production, PV and batteries sizes, prices)
exchanging power with the main grid during an entire year
(T = 8760, one time-step per hour during one year). The
comparison is made in an environment where loads, solar
production and prices are not the same as the one from which
the learned strategies were built. As expected, the centralised
model is able to achieve the lowest costs, equal to 641.70 e. If
we adopt the predicted actions made by the learned regressors,
the community meets a total cost of 1549.70 e, a result that
seems expensive when compared to the centralised model one,
but it becomes remarkable when we consider that the ”rule of
thumb” algorithm produces an expense equal to 3276 e.

VIII. ONE STEP FURTHER: TAKING INTO ACCOUNT THE
THREE PHASES

The mathematical formalisation presented in this paper
considers a balanced operation of the network. Indeed, the
power exchanges between the prosumers do not take into con-
sideration the phase to which they are connected. It considers
only one value for active and reactive power per dwelling.
However, low-voltage distribution networks are intrinsically
unbalanced because even if a prosumer has a three-phase
connection to the grid, house appliances are mainly single
phase. Our concern is the relevance of exchanging powers
between members of the electricity community, that are not
connected to the same phase. Physically, current from the
DER would flow to the distribution transformer and out of
the community while current to supply the load would flow
from the distribution transformer. While this may reduce the
losses to some extent because power does not flow from
the transmission network, controlling the community in this
fashion could further unbalance the network, and result in
the violation of voltage constraints and a reduction of the
hosting capacity of the network. One solution would be to
divide the community into three groups: one per phase and
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• For generating a learning set dedicated to learning how
to optimize the level of power injected into the battery,
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The machine learning task is performed using Extremely
Randomized Trees [12] using the Scikit-learn library [13].

B. Post-processing the predictions

When the regressors learned from data are used to set
the value of a decision variable inside the community, their
output needs to be post-processed, otherwise it could create
a violation of physical constraints (e.g. the predicted value of
power drawn from the storage is greater than the power that
the storage can offer). In that case, the value is corrected and
set equal to the limit that it crossed (e.g. the power drawn
from the storage becomes equal to the maximum power that
the storage can offer).

C. Applying the learned strategies in different load, solar

production and prices configurations

A new set of load profile time series L(i)
P,t, t 2 {1, . . . , T }

and maximal production potentials time series P (i),max
P,t , t 2

{1, . . . , T }, associated with a new time series of price vectors
�t, t 2 {1, . . . , T } are generated for each prosumer i 2
{1, . . . , N}. Starting from the initial time step, at every t, the
required inputs are passed to the regressors for each prosumer
and the outputs (after a post-processing step) are used to set
the value of their actions. The power flow problem is solved
every time to check the voltages, the net power exchanged
with the main grid and respect of the physical constraints.

D. Empirical illustration

In this section, we compare the performance of the learned
strategies in a deterministic setting with two other strategies:
(i) the centralised optimised strategy as defined in [3], and
(ii) another decentralised strategy relying on a predetermined,
thresholds-based, decision rule. This second decentralised
strategy is designed so that it ensures the safety of the system,
and then, tries to restrain the overall costs of the community.
The first point of this second decentralised algorithm is, thus,
to check if there is a risk of overvoltages or undervoltages
at the bus and, in this case, to orient the actions of that
prosumer to avoid it (fully charging/discharging the storage
and maximising/minimising the power production). In the case
where the safety of the grid seems ensured, the decisions are
imposed based on the price of the electricity at that time
step (when it is above/under a predetermined price, impose
a predetermined prosumer’s action). It is certainly simplistic,
but it has the merit of providing a comparison base. Details
about this decision rule can be found in Appendix.

As a comparison metric, we consider the overall costs that
the community incurs (in the same overall environment, i.e.
same loads, solar production, PV and batteries sizes, prices)
exchanging power with the main grid during an entire year
(T = 8760, one time-step per hour during one year). The
comparison is made in an environment where loads, solar
production and prices are not the same as the one from which
the learned strategies were built. As expected, the centralised
model is able to achieve the lowest costs, equal to 641.70 e. If
we adopt the predicted actions made by the learned regressors,
the community meets a total cost of 1549.70 e, a result that
seems expensive when compared to the centralised model one,
but it becomes remarkable when we consider that the ”rule of
thumb” algorithm produces an expense equal to 3276 e.

VIII. ONE STEP FURTHER: TAKING INTO ACCOUNT THE
THREE PHASES

The mathematical formalisation presented in this paper
considers a balanced operation of the network. Indeed, the
power exchanges between the prosumers do not take into con-
sideration the phase to which they are connected. It considers
only one value for active and reactive power per dwelling.
However, low-voltage distribution networks are intrinsically
unbalanced because even if a prosumer has a three-phase
connection to the grid, house appliances are mainly single
phase. Our concern is the relevance of exchanging powers
between members of the electricity community, that are not
connected to the same phase. Physically, current from the
DER would flow to the distribution transformer and out of
the community while current to supply the load would flow
from the distribution transformer. While this may reduce the
losses to some extent because power does not flow from
the transmission network, controlling the community in this
fashion could further unbalance the network, and result in
the violation of voltage constraints and a reduction of the
hosting capacity of the network. One solution would be to
divide the community into three groups: one per phase and
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The machine learning task is performed using Extremely
Randomized Trees [12] using the Scikit-learn library [13].

B. Post-processing the predictions

When the regressors learned from data are used to set
the value of a decision variable inside the community, their
output needs to be post-processed, otherwise it could create
a violation of physical constraints (e.g. the predicted value of
power drawn from the storage is greater than the power that
the storage can offer). In that case, the value is corrected and
set equal to the limit that it crossed (e.g. the power drawn
from the storage becomes equal to the maximum power that
the storage can offer).

C. Applying the learned strategies in different load, solar

production and prices configurations

A new set of load profile time series L(i)
P,t, t 2 {1, . . . , T }

and maximal production potentials time series P (i),max
P,t , t 2

{1, . . . , T }, associated with a new time series of price vectors
�t, t 2 {1, . . . , T } are generated for each prosumer i 2
{1, . . . , N}. Starting from the initial time step, at every t, the
required inputs are passed to the regressors for each prosumer
and the outputs (after a post-processing step) are used to set
the value of their actions. The power flow problem is solved
every time to check the voltages, the net power exchanged
with the main grid and respect of the physical constraints.

D. Empirical illustration

In this section, we compare the performance of the learned
strategies in a deterministic setting with two other strategies:
(i) the centralised optimised strategy as defined in [3], and
(ii) another decentralised strategy relying on a predetermined,
thresholds-based, decision rule. This second decentralised
strategy is designed so that it ensures the safety of the system,
and then, tries to restrain the overall costs of the community.
The first point of this second decentralised algorithm is, thus,
to check if there is a risk of overvoltages or undervoltages
at the bus and, in this case, to orient the actions of that
prosumer to avoid it (fully charging/discharging the storage
and maximising/minimising the power production). In the case
where the safety of the grid seems ensured, the decisions are
imposed based on the price of the electricity at that time
step (when it is above/under a predetermined price, impose
a predetermined prosumer’s action). It is certainly simplistic,
but it has the merit of providing a comparison base. Details
about this decision rule can be found in Appendix.

As a comparison metric, we consider the overall costs that
the community incurs (in the same overall environment, i.e.
same loads, solar production, PV and batteries sizes, prices)
exchanging power with the main grid during an entire year
(T = 8760, one time-step per hour during one year). The
comparison is made in an environment where loads, solar
production and prices are not the same as the one from which
the learned strategies were built. As expected, the centralised
model is able to achieve the lowest costs, equal to 641.70 e. If
we adopt the predicted actions made by the learned regressors,
the community meets a total cost of 1549.70 e, a result that
seems expensive when compared to the centralised model one,
but it becomes remarkable when we consider that the ”rule of
thumb” algorithm produces an expense equal to 3276 e.

VIII. ONE STEP FURTHER: TAKING INTO ACCOUNT THE
THREE PHASES

The mathematical formalisation presented in this paper
considers a balanced operation of the network. Indeed, the
power exchanges between the prosumers do not take into con-
sideration the phase to which they are connected. It considers
only one value for active and reactive power per dwelling.
However, low-voltage distribution networks are intrinsically
unbalanced because even if a prosumer has a three-phase
connection to the grid, house appliances are mainly single
phase. Our concern is the relevance of exchanging powers
between members of the electricity community, that are not
connected to the same phase. Physically, current from the
DER would flow to the distribution transformer and out of
the community while current to supply the load would flow
from the distribution transformer. While this may reduce the
losses to some extent because power does not flow from
the transmission network, controlling the community in this
fashion could further unbalance the network, and result in
the violation of voltage constraints and a reduction of the
hosting capacity of the network. One solution would be to
divide the community into three groups: one per phase and

we provide a graph of the evolution of the voltage for all
buses of the feeder. One can observe that the production of
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Fig. 3. Illustration of the voltage potential over 24 hours.

houses located at the end of the feeder (i.e., far from the
transformer) is modulated in order to avoid over-voltages.
Even if the community still suffers partial curtailment, it has
to be compared with the complete disconnection of PV units
when overvoltages are observed. In the centralised community
strategy, the total curtailment was 21.38 kWh, whereas the
complete disconnection of inverters observing an overvoltage
at their bus would lead to a curtailment of 31.63 kWh.

VII. DISTRIBUTED SCHEMES

In the previous section, we have proposed a centralised
control scheme to suppress overvoltages in the community.
As specified in Section VI-A, one of the main shortcomings
of centralised controllers is their cost of implementation and
maintenance. They indeed require building and maintaining a
costly communication infrastructure between the houses and
the centralised controllers. They also require a detailed model
of the low-voltage network that may be expensive to obtain.
Therefore, it would be interesting to design other types of
control schemes that would be much cheaper. Ideally, these
schemes should not rely on an expensive communication
architecture and should be able to work even without knowing
a detailed model of the low-voltage network.

In this section, we investigate how to design distributed con-
trol schemes that may contribute to reaching (at least partially)
the objectives of the community. Our strategy is to resort to
machine learning techniques that may extract, from centralised
solution(s), decision making patterns to be applied locally,
i.e. by only measuring features about the (local) prosumer.
Our machine learning approach is an imitative learning-type
approach where we learn four different regressors from data.
These four regressors are dedicated to learning the optimal
levels of active power production, reactive power production,
power injected into the storage device and power drawn from
the storage device to be applied by prosumer (i).

A. Generating data for solving machine learning tasks

First, for each prosumer i 2 {1, . . . , N}, we generate a set
of load profiles L(i)

P,t, t 2 {1, . . . , T } and maximal production
potentials P (i),max

P,t , t 2 {1, . . . , T }, associated with a time
series of price vectors �t, t 2 {1, . . . , T }. We consider the
optimisation criterion described in Equation 20. This power
flow problem can be solved using, for instance, the FBS-OPF
algorithm proposed by [3]. Solving one such problem outputs
a time series of data, corresponding to the evolution of all the
indicators over the time horizon:
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From this time series of data, one can extract a series of local
data, i.e. relative to one single prosumer (i):
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From these extractions, we generate the following learning
sets:

• For generating a learning set dedicated to learning how
to optimize the level of active power production, we
process the variables ⌅(i),⇤

t into the following set of
(input, output) pairs:

LP =
n⇣

ini,t
P , outi,t

P

⌘oi=N,t=T �1

i=1,t=0
(25)

where, 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},

ini,t
P =

⇣
i, |v(i)

t |, arg(v(i),⇤
t ), �t, �(i),⇤

t , L(i)
P,t, P (i),max

P,t

⌘
(26)

outi,t
P = P (i),⇤

P,t (27)

where:
– i : id number of the bus
– |v(i)

t | : magnitude of the voltage at bus i at time step
t

– arg(v(i)
t ) : phase of the voltage at bus i at time step t

– �t : electricity price at time step t, considered as being
unique in the whole feeder

– �(i)
t : level of charge of the storage of bus i at time

step t
– L(i)

P,t : load consumption at bus i at time step t

– P (i),max
P,t : maximal production potential at bus i at

time step t

• For generating a learning set dedicated to learning how
to optimize the level of reactive power production, we

process the whole variables ⌅(i),⇤
t into the following set

of (input, output) pairs:
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Q
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where, 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},
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• For generating a learning set dedicated to learning how
to optimize the level of power injected into the battery,
we process the whole variables ⌅(i),⇤

t into the following
set of (input, output) pairs:
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ini,t
C , outi,t

C

⌘oi=N,t=T �1

i=1,t=0
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• For generating a learning set dedicated to learning how
to optimize the level of power injected into the battery,
we process the whole variables ⌅(i),⇤

t into the following
set of (input, output) pairs:

LD =
n⇣

ini,t
D , outi,t

D
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where, 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},
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⌘

The machine learning task is performed using Extremely
Randomized Trees [12] using the Scikit-learn library [13].

B. Post-processing the predictions

When the regressors learned from data are used to set
the value of a decision variable inside the community, their
output needs to be post-processed, otherwise it could create
a violation of physical constraints (e.g. the predicted value of
power drawn from the storage is greater than the power that
the storage can offer). In that case, the value is corrected and
set equal to the limit that it crossed (e.g. the power drawn
from the storage becomes equal to the maximum power that
the storage can offer).

C. Applying the learned strategies in different load, solar

production and prices configurations

A new set of load profile time series L(i)
P,t, t 2 {1, . . . , T }

and maximal production potentials time series P (i),max
P,t , t 2

{1, . . . , T }, associated with a new time series of price vectors
�t, t 2 {1, . . . , T } are generated for each prosumer i 2
{1, . . . , N}. Starting from the initial time step, at every t, the
required inputs are passed to the regressors for each prosumer
and the outputs (after a post-processing step) are used to set
the value of their actions. The power flow problem is solved
every time to check the voltages, the net power exchanged
with the main grid and respect of the physical constraints.

D. Empirical illustration

In this section, we compare the performance of the learned
strategies in a deterministic setting with two other strategies:
(i) the centralised optimised strategy as defined in [3], and
(ii) another decentralised strategy relying on a predetermined,
thresholds-based, decision rule. This second decentralised
strategy is designed so that it ensures the safety of the system,
and then, tries to restrain the overall costs of the community.
The first point of this second decentralised algorithm is, thus,
to check if there is a risk of overvoltages or undervoltages
at the bus and, in this case, to orient the actions of that
prosumer to avoid it (fully charging/discharging the storage
and maximising/minimising the power production). In the case
where the safety of the grid seems ensured, the decisions are
imposed based on the price of the electricity at that time
step (when it is above/under a predetermined price, impose
a predetermined prosumer’s action). It is certainly simplistic,
but it has the merit of providing a comparison base. Details
about this decision rule can be found in Appendix.

As a comparison metric, we consider the overall costs that
the community incurs (in the same overall environment, i.e.
same loads, solar production, PV and batteries sizes, prices)
exchanging power with the main grid during an entire year
(T = 8760, one time-step per hour during one year). The
comparison is made in an environment where loads, solar
production and prices are not the same as the one from which
the learned strategies were built. As expected, the centralised
model is able to achieve the lowest costs, equal to 641.70 e. If
we adopt the predicted actions made by the learned regressors,
the community meets a total cost of 1549.70 e, a result that
seems expensive when compared to the centralised model one,
but it becomes remarkable when we consider that the ”rule of
thumb” algorithm produces an expense equal to 3276 e.

VIII. ONE STEP FURTHER: TAKING INTO ACCOUNT THE
THREE PHASES

The mathematical formalisation presented in this paper
considers a balanced operation of the network. Indeed, the
power exchanges between the prosumers do not take into con-
sideration the phase to which they are connected. It considers
only one value for active and reactive power per dwelling.
However, low-voltage distribution networks are intrinsically
unbalanced because even if a prosumer has a three-phase
connection to the grid, house appliances are mainly single
phase. Our concern is the relevance of exchanging powers
between members of the electricity community, that are not
connected to the same phase. Physically, current from the
DER would flow to the distribution transformer and out of
the community while current to supply the load would flow
from the distribution transformer. While this may reduce the
losses to some extent because power does not flow from
the transmission network, controlling the community in this
fashion could further unbalance the network, and result in
the violation of voltage constraints and a reduction of the
hosting capacity of the network. One solution would be to
divide the community into three groups: one per phase and
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• For generating a learning set dedicated to learning how
to optimize the level of power injected into the battery,
we process the whole variables ⌅(i),⇤

t into the following
set of (input, output) pairs:

LC =
n⇣

ini,t
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• For generating a learning set dedicated to learning how
to optimize the level of power injected into the battery,
we process the whole variables ⌅(i),⇤

t into the following
set of (input, output) pairs:

LD =
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D , outi,t

D

⌘oi=N,t=T �1

i=1,t=0
(30)

where, 8t 2 {0, . . . , T � 1}, 8i 2 {1, . . . , N},
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The machine learning task is performed using Extremely
Randomized Trees [12] using the Scikit-learn library [13].

B. Post-processing the predictions

When the regressors learned from data are used to set
the value of a decision variable inside the community, their
output needs to be post-processed, otherwise it could create
a violation of physical constraints (e.g. the predicted value of
power drawn from the storage is greater than the power that
the storage can offer). In that case, the value is corrected and
set equal to the limit that it crossed (e.g. the power drawn
from the storage becomes equal to the maximum power that
the storage can offer).

C. Applying the learned strategies in different load, solar

production and prices configurations

A new set of load profile time series L(i)
P,t, t 2 {1, . . . , T }

and maximal production potentials time series P (i),max
P,t , t 2

{1, . . . , T }, associated with a new time series of price vectors
�t, t 2 {1, . . . , T } are generated for each prosumer i 2
{1, . . . , N}. Starting from the initial time step, at every t, the
required inputs are passed to the regressors for each prosumer
and the outputs (after a post-processing step) are used to set
the value of their actions. The power flow problem is solved
every time to check the voltages, the net power exchanged
with the main grid and respect of the physical constraints.

D. Empirical illustration

In this section, we compare the performance of the learned
strategies in a deterministic setting with two other strategies:
(i) the centralised optimised strategy as defined in [3], and
(ii) another decentralised strategy relying on a predetermined,
thresholds-based, decision rule. This second decentralised
strategy is designed so that it ensures the safety of the system,
and then, tries to restrain the overall costs of the community.
The first point of this second decentralised algorithm is, thus,
to check if there is a risk of overvoltages or undervoltages
at the bus and, in this case, to orient the actions of that
prosumer to avoid it (fully charging/discharging the storage
and maximising/minimising the power production). In the case
where the safety of the grid seems ensured, the decisions are
imposed based on the price of the electricity at that time
step (when it is above/under a predetermined price, impose
a predetermined prosumer’s action). It is certainly simplistic,
but it has the merit of providing a comparison base. Details
about this decision rule can be found in Appendix.

As a comparison metric, we consider the overall costs that
the community incurs (in the same overall environment, i.e.
same loads, solar production, PV and batteries sizes, prices)
exchanging power with the main grid during an entire year
(T = 8760, one time-step per hour during one year). The
comparison is made in an environment where loads, solar
production and prices are not the same as the one from which
the learned strategies were built. As expected, the centralised
model is able to achieve the lowest costs, equal to 641.70 e. If
we adopt the predicted actions made by the learned regressors,
the community meets a total cost of 1549.70 e, a result that
seems expensive when compared to the centralised model one,
but it becomes remarkable when we consider that the ”rule of
thumb” algorithm produces an expense equal to 3276 e.

VIII. ONE STEP FURTHER: TAKING INTO ACCOUNT THE
THREE PHASES

The mathematical formalisation presented in this paper
considers a balanced operation of the network. Indeed, the
power exchanges between the prosumers do not take into con-
sideration the phase to which they are connected. It considers
only one value for active and reactive power per dwelling.
However, low-voltage distribution networks are intrinsically
unbalanced because even if a prosumer has a three-phase
connection to the grid, house appliances are mainly single
phase. Our concern is the relevance of exchanging powers
between members of the electricity community, that are not
connected to the same phase. Physically, current from the
DER would flow to the distribution transformer and out of
the community while current to supply the load would flow
from the distribution transformer. While this may reduce the
losses to some extent because power does not flow from
the transmission network, controlling the community in this
fashion could further unbalance the network, and result in
the violation of voltage constraints and a reduction of the
hosting capacity of the network. One solution would be to
divide the community into three groups: one per phase and
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• For generating a learning set dedicated to learning how
to optimize the level of power injected into the battery,
we process the whole variables ⌅(i),⇤

t into the following
set of (input, output) pairs:
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• For generating a learning set dedicated to learning how
to optimize the level of power injected into the battery,
we process the whole variables ⌅(i),⇤

t into the following
set of (input, output) pairs:
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The machine learning task is performed using Extremely
Randomized Trees [12] using the Scikit-learn library [13].

B. Post-processing the predictions

When the regressors learned from data are used to set
the value of a decision variable inside the community, their
output needs to be post-processed, otherwise it could create
a violation of physical constraints (e.g. the predicted value of
power drawn from the storage is greater than the power that
the storage can offer). In that case, the value is corrected and
set equal to the limit that it crossed (e.g. the power drawn
from the storage becomes equal to the maximum power that
the storage can offer).

C. Applying the learned strategies in different load, solar

production and prices configurations

A new set of load profile time series L(i)
P,t, t 2 {1, . . . , T }

and maximal production potentials time series P (i),max
P,t , t 2

{1, . . . , T }, associated with a new time series of price vectors
�t, t 2 {1, . . . , T } are generated for each prosumer i 2
{1, . . . , N}. Starting from the initial time step, at every t, the
required inputs are passed to the regressors for each prosumer
and the outputs (after a post-processing step) are used to set
the value of their actions. The power flow problem is solved
every time to check the voltages, the net power exchanged
with the main grid and respect of the physical constraints.

D. Empirical illustration

In this section, we compare the performance of the learned
strategies in a deterministic setting with two other strategies:
(i) the centralised optimised strategy as defined in [3], and
(ii) another decentralised strategy relying on a predetermined,
thresholds-based, decision rule. This second decentralised
strategy is designed so that it ensures the safety of the system,
and then, tries to restrain the overall costs of the community.
The first point of this second decentralised algorithm is, thus,
to check if there is a risk of overvoltages or undervoltages
at the bus and, in this case, to orient the actions of that
prosumer to avoid it (fully charging/discharging the storage
and maximising/minimising the power production). In the case
where the safety of the grid seems ensured, the decisions are
imposed based on the price of the electricity at that time
step (when it is above/under a predetermined price, impose
a predetermined prosumer’s action). It is certainly simplistic,
but it has the merit of providing a comparison base. Details
about this decision rule can be found in Appendix.

As a comparison metric, we consider the overall costs that
the community incurs (in the same overall environment, i.e.
same loads, solar production, PV and batteries sizes, prices)
exchanging power with the main grid during an entire year
(T = 8760, one time-step per hour during one year). The
comparison is made in an environment where loads, solar
production and prices are not the same as the one from which
the learned strategies were built. As expected, the centralised
model is able to achieve the lowest costs, equal to 641.70 e. If
we adopt the predicted actions made by the learned regressors,
the community meets a total cost of 1549.70 e, a result that
seems expensive when compared to the centralised model one,
but it becomes remarkable when we consider that the ”rule of
thumb” algorithm produces an expense equal to 3276 e.

VIII. ONE STEP FURTHER: TAKING INTO ACCOUNT THE
THREE PHASES

The mathematical formalisation presented in this paper
considers a balanced operation of the network. Indeed, the
power exchanges between the prosumers do not take into con-
sideration the phase to which they are connected. It considers
only one value for active and reactive power per dwelling.
However, low-voltage distribution networks are intrinsically
unbalanced because even if a prosumer has a three-phase
connection to the grid, house appliances are mainly single
phase. Our concern is the relevance of exchanging powers
between members of the electricity community, that are not
connected to the same phase. Physically, current from the
DER would flow to the distribution transformer and out of
the community while current to supply the load would flow
from the distribution transformer. While this may reduce the
losses to some extent because power does not flow from
the transmission network, controlling the community in this
fashion could further unbalance the network, and result in
the violation of voltage constraints and a reduction of the
hosting capacity of the network. One solution would be to
divide the community into three groups: one per phase and
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• For generating a learning set dedicated to learning how
to optimize the level of power injected into the battery,
we process the whole variables ⌅(i),⇤
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The machine learning task is performed using Extremely
Randomized Trees [12] using the Scikit-learn library [13].

B. Post-processing the predictions

When the regressors learned from data are used to set
the value of a decision variable inside the community, their
output needs to be post-processed, otherwise it could create
a violation of physical constraints (e.g. the predicted value of
power drawn from the storage is greater than the power that
the storage can offer). In that case, the value is corrected and
set equal to the limit that it crossed (e.g. the power drawn
from the storage becomes equal to the maximum power that
the storage can offer).

C. Applying the learned strategies in different load, solar

production and prices configurations

A new set of load profile time series L(i)
P,t, t 2 {1, . . . , T }

and maximal production potentials time series P (i),max
P,t , t 2

{1, . . . , T }, associated with a new time series of price vectors
�t, t 2 {1, . . . , T } are generated for each prosumer i 2
{1, . . . , N}. Starting from the initial time step, at every t, the
required inputs are passed to the regressors for each prosumer
and the outputs (after a post-processing step) are used to set
the value of their actions. The power flow problem is solved
every time to check the voltages, the net power exchanged
with the main grid and respect of the physical constraints.

D. Empirical illustration

In this section, we compare the performance of the learned
strategies in a deterministic setting with two other strategies:
(i) the centralised optimised strategy as defined in [3], and
(ii) another decentralised strategy relying on a predetermined,
thresholds-based, decision rule. This second decentralised
strategy is designed so that it ensures the safety of the system,
and then, tries to restrain the overall costs of the community.
The first point of this second decentralised algorithm is, thus,
to check if there is a risk of overvoltages or undervoltages
at the bus and, in this case, to orient the actions of that
prosumer to avoid it (fully charging/discharging the storage
and maximising/minimising the power production). In the case
where the safety of the grid seems ensured, the decisions are
imposed based on the price of the electricity at that time
step (when it is above/under a predetermined price, impose
a predetermined prosumer’s action). It is certainly simplistic,
but it has the merit of providing a comparison base. Details
about this decision rule can be found in Appendix.

As a comparison metric, we consider the overall costs that
the community incurs (in the same overall environment, i.e.
same loads, solar production, PV and batteries sizes, prices)
exchanging power with the main grid during an entire year
(T = 8760, one time-step per hour during one year). The
comparison is made in an environment where loads, solar
production and prices are not the same as the one from which
the learned strategies were built. As expected, the centralised
model is able to achieve the lowest costs, equal to 641.70 e. If
we adopt the predicted actions made by the learned regressors,
the community meets a total cost of 1549.70 e, a result that
seems expensive when compared to the centralised model one,
but it becomes remarkable when we consider that the ”rule of
thumb” algorithm produces an expense equal to 3276 e.

VIII. ONE STEP FURTHER: TAKING INTO ACCOUNT THE
THREE PHASES

The mathematical formalisation presented in this paper
considers a balanced operation of the network. Indeed, the
power exchanges between the prosumers do not take into con-
sideration the phase to which they are connected. It considers
only one value for active and reactive power per dwelling.
However, low-voltage distribution networks are intrinsically
unbalanced because even if a prosumer has a three-phase
connection to the grid, house appliances are mainly single
phase. Our concern is the relevance of exchanging powers
between members of the electricity community, that are not
connected to the same phase. Physically, current from the
DER would flow to the distribution transformer and out of
the community while current to supply the load would flow
from the distribution transformer. While this may reduce the
losses to some extent because power does not flow from
the transmission network, controlling the community in this
fashion could further unbalance the network, and result in
the violation of voltage constraints and a reduction of the
hosting capacity of the network. One solution would be to
divide the community into three groups: one per phase and



Post processing solutions & and testing 
solutions

Post-processing solutions

-> Ensure physical constraints are satisfied  

For the active and reactive power production levels, ensure that the production 
levels are compatible with production bounds, for each prosumer i 

For the power injected into / drawn from the battery, ensure that both maximal 
charging/discharging powers and of the level of charge evolution are feasible 

Generating other scenarios to try the learned strategy

-> Evaluate the performance of learned policies in other environments



Test case

The number of buses is 15 

The number of prosumers is 14 

The number of branches is 14 

∆t is 1h 

The time horizon T is 8760 

The line resistance Rd1 = Rd2 = ... = RdL is 0.025 Ω 

The line reactance Xd1 = Xd2 = ... = XdL is 0.005 Ω  

The nominal voltage of the network is 400 V 

The maximum admissible voltage vmax is 1.10 pu 

The minimum admissible voltage v min is 0.90 pu
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Figure 5.4: A summary of the steps to use the SL model to control the prosumer’s actions

are implemented using Julia [42] language, involving the use of GUROBI [43] as solver
for the FBS-OPF and the Extremely Randomized Trees [39] using the Scikit-learn [40]
library for the machine learning approach. Scenarios S1, S2 and S3 are thus simulated on
the test network controlled by the three control strategies. The index used to compare the
schemes is the overall costs that the community suffers during the year (that is also the
objective function of the FBS-OPF).

The numerical results are showed in Table 5.5. The centralized controller achieves,
the best result in every scenario, the costs encountered with the SL algorithm in scenarios
S1 and S3 are lower then the ones suffered with the RT algorithm, while in scenario S2
the SL results to be the worst one among the three strategies.



Test case: prosumers characteristics
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• The maximum admissible voltage v max is 1.10 pu;

• The minimum admissible voltage v min is 0.90 pu;

• For the feeder, P max, t
pot,0 = 1 MW, P min, t

pot,0 = -1 MW, Q max, t
pot,0 = 1 MW, Q min, t

pot,0 = -1 MW
8t 2 {1, . . . ,T };

Each prosumer inside the community is defined by an identification number (its posi-
tion along the network), the number of occupants of the associated dwelling, the PV and
storage installed capacity. These information are resumed in Table 5.1.

Id Number of occupants PV installed capacity Storage installed capacity
kWp kWh

1 1 2 2
2 1 2 2
3 2 3 2
4 2 3 2
5 2 3 2
6 3 3.5 5
7 3 3.5 5
8 3 3.5 5
9 4 5 6
10 4 5 6
11 4 5 6
12 4 5 6
13 5 7 8
14 5 7 8

Table 5.1: Dwellings characteristic inside the community

All the values are then converted in the per unit system.

5.2 Test scenarios
To create a complete scenario that can be used to test the control schemes, we need,
after defining the characteristic of the test network, to specify the load profiles, maximal
production potentials and electricity prices over the entire period of time. Three different
scenarios, named S1, S2 and S3, are generated as follows.



Test scenarios

Load profiles are generated  
using the model provided in: 

Richardson, I., Thomson, M., Infield, 
D., & Clifford, C. (2010). Domestic 
electricity use: A high-resolution 
energy demand model. Energy and 
buildings, 42(10), 1878-1887.  

3 scenarios solar production + 
electricity prices

5.2. TEST SCENARIOS 39

5.2.1 Load profiles

The generation of the load profiles of each prosumer are obtained using the model pre-
sented in [41]. The model allows to produce the load profile of a customized dwelling in a
day, setting the number of residents of the house, specifying the type of day (weekday or
weekend), the month and what are the appliances inside. To obtain the set of P t

Load, i and
Q t

Load i 8t 2 { 1, . . . 8760 } , 8i 2 { 1, . . . N � 1 } the model was run several time, obtaining
weekdays and weekend days for every month of the year. The appliances associated to a
dwelling have been selected randomly. The model also provides a mean power factor for
the appliances, in order to obtain the reactive power starting from the active power values.

5.2.2 Sun radiation profiles

The sets of maximal production potential P max, t
pr,i , 8t 2 { 1, . . . 8760 } , 8i 2 { 1, . . . N � 1 }

are obtained using real solar radiation data evaluated in W/Wp and multiplying them for
the nominal power of the PV panels installation of each prosumer. An example of the
solar radiation in the three scenarios on the same month (June) is showed in Fig. 5.2.2.

Figure 5.1: Sun radiation in the three scenario on the same month.
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5.2.3 Electricity prices

The time series of price vectors c t
el, t 2 { 1, . . . 8760 } used in the scenarios are equal to

the prices seen on the EPEX SPOT Belgium Day-Ahead Market [35] of past years. Each
scenario is related to a single year. The average daily price over the year in the three
scenarios is showed in Fig. 5.2.3.

Figure 5.2: Average daily price for electricity in the test scenarios

5.3 Learning set

Due to the nature of the imitative techniques used in the SL algorithm, we must produce
also an appropriate learning set, as described in Section 3.3, before using it for the decision
making. Two additional scenarios, S 4 and S 5 are generated in the same way of the test



Learning scenarios

We generate two additional price 
scenarios, S4 and S5. 

The FBS-OPF algorithm is run on 
these two scenarios. 

The resulting outputs of the FBS-OPF 
are used to generate learning sets for 
the regressors.



Results

Overall costs (objective function) 

Energy outlook: 
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Overall costs
Scenario S1 S2 S3
FBS-OPF algorithm 1105.54 e 2121.16 e 1837.80 e
SL algorithm 2711.44 e 7832.43 e 5123.09 e
RT algorithm 5143.32 e 6501.94 e 5807.77 e

Table 5.2: Overall costs encountered with the three algorithms

A deeper insight of the strategies’ behaviors can be gained looking at the prosumers’
decisions and at the electrical state of the network during the year.
The key reason why PV panels production requires to be controlled and curtailed is that,
in some cases, generating too much power and injecting it in the network leads to over-
voltages or overloadings. When this happens, the inverters of the PV units need to be
disconnected and the prosumer wastes the solar radiation. A partial curtailment of the
total production, in order to prevent the disconnection, would be in these cases a better
alternative for the prosumer. The RT algorithm does not provide this option (when there
is risk of overvoltages it set the production to zero), unlike the FBS-OPF and the SL algo-
rithms. The percentages of the total potential production that has actually been produced
is showed in Table 5.5.

Curtailments over the year
Scenario S1 S2 S3
FBS-OPF algorithm 7.01% 11.20% 9.69%
SL algorithm 11.13% 32.78% 14.80%
RT algorithm 11.91% 13.46% 15.12%

Table 5.3: PV production respect to total potential production.

Another relevant difference between the control scheme can be observed in the use of
the storage systems. The FBS-OPF algorithm expects that the prosumers exchange power
with the batteries very often, with at least one storage system inside the community that
stores or release energy most of the time steps, in order to buy energy whenever it is
affordable and sell it when it is expensive. The other two algorithm instead take much
less advantage of the presence of the storage, charging and discharging them in a less
efficient way.
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Simulating a 3-phase unbalanced network

Generate a set of SLPs  

Dispatch SLPs over the 3 phases by « approximating the job of an 
electrician » 

Propose scenarii (PV, EVs).



Simulating a 3-phase unbalanced network 
(load sample)



Simulating a 3-phase unbalanced network 
(load only)



Simulating a 3-phase unbalanced network 
(a few PVs)



Simulating a 3-phase unbalanced network 
(a few PVs)

Power flow at the transformer 



Simulating a 3-phase unbalanced network 
(PVs everywhere)



Simulating a 3-phase unbalanced network 
(EVs 10h-12h)



Simulating a 3-phase unbalanced network 
(EVs 18h)



II. 
The mobile community



We assume that the community is made of:

A set of electricity consumers using EVs 

A set of location pairs (starting point, destination) corresponding to EVs travels 

A set of electricity producers using renewable energy production capacities 

The goal is to:

Maximise the consumption of local electricity, while avoiding electricity 
shortages of EVs

The mobile community



The atomic case

An EV starts from A and wants to join B  
(A: home, B: office) 

You can charge your EV at home in A at a price PA 

There exists a source of electricity at C at a price PC 

PC may be lower than PA, but it has a cost to be reached 
(detour) 

The question is: how to compute decision making strategies 
to minimise the electricity budget, given the knowledge of: 

• Prices, distances, time horizon 

• Battery level

PA

PC



The atomic case

Start in A with a certain battery 
charge level 

Consider different values of detour 
to reach C 

Prices are constant:  

A (at the network price) : 
0.25€/kWh 

C (from a PV installation) : 
0.15€/kWh

The total cost of recharge at C  
(including the detour) is larger 

than the cost at A

Detour is limited by 
the level of the battery

Detour is cheaper



We have identified three different configurations: 

1. Charge all-day long (eventually on a low power charging station)

Residential PVs 

Small wind turbines 

2. Charge during lunch time with a fast-charger (with a parameter fixing the 
maximal distance that may be travelled)

Fast chargers 

Wind turbines 

3. Make a detour

Fast chargers

Beyond the atomic case



1st case

Beyond the atomic case

‘Fast’ charger

‘Slow’ charger

Starting point

Destination



‘Fast’ charger

‘Slow’ charger

Starting point

Destination

2nd case

Beyond the atomic case



3rd case

Beyond the atomic case

‘Fast’ charger

‘Slow’ charger

Starting point

Destination



Finding a place to charge can be seen as a dispatching problem: 

We have first developed a intuitive heuristics to dispatch the fleet of EVS 

This strategy is founded on a few parameters defining the maximal distances 
that are admissible (detour, lunch time round-trip, one-day charge) 

This strategy aims at maximising the amount of energy that is gathered 
« locally » 

This strategy will be the reference strategy.

d : EV ! Station

Beyond the atomic case



3.4. O����������� ������� ��

These parameters are de�ned such as the equation below is veri�ed.

distADL 6 distLT 6 distdetour (3.1)

Finally the di�erent restrictions introduced above are summarized in the Figure 4.1.

EVi(Ai, Bi)
8i 2 {1, 2, ..., nbEV }

Cj

8j 2 {1, 2, ..., nbStation}

Long
recharging time

Charge all-day long
dist(Bi, Cj)  distADL

Slow charger :
Residential PV installation

Short
recharging time

Charge during
lunch time

dist(Bi, Cj)  distLT

Make a detour
dist(Ai, Cj)+dist(Bi, Cj)

 distdetour

Fast charger:
Windturbine - PV farm

Figure 3.1 – Starting from an EV and a charging station given represented in the upper
white box, this schematic provides an overview of di�erent recharging time con�gurations
and their constraints. The main distinction on which the proposed classication is based is the

long or short recharging time leading to a fast or slow charger.

3.4 Optimization problem

Formally the corresponding optimization problem of dispatching, d may be described as
follows.

d : EV ! Station (3.2)

Where one of main constraints consists in associating only one station to an EV, but
potentially several vehicles by station.

Beyond the atomic case



Next-step: optimising the dispatch strategy 

Necessity to have access to a value function Q (quality function) that would 
assess the quality of a dispatch strategy, including constraints satisfaction 

No convexity neither differentiability ; use of Derivative-Free Optimisation 
techniques 

Also looking for decentralised dispatch strategies

d⇤ 2 argmax
d2⌃

Q(d)

Beyond the atomic case



Getting closer to reality

Charging stations

Domestic PV installation (5 kWc) 

Industrial PV system (100 kWc) 

PV farm (100 MWc) 

Single wind turbine (1 MW) 

Wind farm (10 MW) 

Chargers

22 kW, 50 kW and 120 kW 

EVs capacity & charging curve

Capacity: 60 kWh, consumption: 20 kWh/100km, range: 
300 km. 

Charging curve taken from Gao, S., Chau, K.T., Chan, 
C.C., Liu, C., Wu, D., 2011. Optimal control framework 
and scheme for integrating plug-in hybrid electric 
vehicles into grid. Journal of Asian Electric Vehicles

1.4. L���: EV �

1.4.1 Charging function

As mentioned in the study of Olivella-Rosell et al. [12], di�erent authors propose di�er-
ent features of charging pro�le. Among those are, for example, Clement-Nyns et al. [1]
and Guo et al. [6] consider constant power pro�les whereas Maitra et al. [11] prefer to
use variable power during the charging pro�les. In a more interesting way, Qian et al.
[16] consider a charging process model which links the power of the charger and state of
charge (SoC). However in this work, the arbitrary choice has been made to link the SoC to
the charging time, therefore the model of charging pro�le considers in this work will be
in respect of Gao et al. [4].

Applying the same reasoning as Gao et al. [4], a constant voltage charging is provide
to ensure a constant current input to the battery until it is fully charged. Figure 2.1 showns
the charging pro�le of SoC according to time.

Figure 1.1 – Typical Li-ion charge pro�le of SOC from Gao et al. [4].

Regarding this representation, two remarks impose. Firstly the charging pro�le is non-
linear and secondly the charge time depends on power provides by electrical socket.

Considering the non-linearity, it can be seen from the chart above that the curve is
made of two linear parts. Up to 80 % of SoC, the recharging period is around two time
slots. Then from 80 % to 100 %, the recharge is twice as long as previously and takes four
time slots. This fact is usually recommended and occurs for security reason. In this thesis,
in a �rst time a linear model will be assumed for charching function and only later when
the model will be su�ciently devolopped, this particularity could be considered (Chapter
5).

Regarding the electrical socket, this device is a part of the charging infrastructure. This
one includes the EV charging point’s socket and available power to charge. The EV infras-
tructure is often neglected when the EV charging demand is computed. In the following
work, this feature will be also neglected in a �rst time. Later a number associated to each

PV farm of Toul-Rosières, 115 MWc

Wind farm of Estinnes, 81 MW



Getting closer to reality
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Figure 6.10 – Map of the community studied to compare the genetic and the intuitive
strategies. The dimension of the markers (circle and square) is linked to the nominal power

available.

to the genetic dispatching to improve the convergence.

30 vehicles, 58 chargers, 30 stations



The dispatching optimisation problem

Problem structure

There is no natural structure in the problem 

No continuity, convexity, or ‘proximity’ notion may be easily (at this stage) 
deductible from the position of locations on the map 

We propose to develop a genetic algorithm approach to optimise the dispatching 
between vehicles and charging 

A gene represents a dispatch strategy, i.e. a set of associations between a EVs and 
charging stations: 

Genes are evaluated using a ‘fitness function’

1 3 7 4 2 6 8 9 5 10



Genetic optimisation

More concretely

Start with an initial population of genes 

Using the fitness function, form a subpopulation with the best genes 

Generate a new population using genetic operators (e.g. crossing-
over, mutations) 

Iterate the process until a stopping condition is reached 

Genetic operators

Crossing-over & recombination 

Mutations (uniform, non-uniform, Gaussian…) 

Note that in our specific context, we also need to avoid ‘collisions’, i.e. 
the fact that two vehicles are dispatched to the same charger



Genetic optimisation

The fitness function

The fitness function summarises how ‘good’ a given solution (encoded using a gene) 

Several fitness functions may be chosen; here we focus on: 

Maximising the average (on the whole fleet of EVs) level of charge at the end of 
the day 

Why « at the end of the day » ? In order to minimise the quantity of energy taken from 
the grid (EVs start everyday with a full battery)

fitness(gene) =
NX

i=1

leveli,T



The match

                        VERSUS 

�� C������ 4. I�������� ��������

Bi (8i 2 {1, 2, ..., nbEV }) and the charging station Cj (8j 2 {1, 2, ..., nbStation})
to consider Cj close to Bi.

• distLT : Distance Lunch Time is the maximal distance from the location Bi (8i 2
{1, 2, ..., nbEV }) to the charging station Cj (8j 2 {1, 2, ..., nbStation}) allowing
a recharge during the lunch time.

• distdetour : Distance Detour is the maximal distance that the EV’s owner can travel
to recharge his EV during the journey home-work.

These parameters are de�ned such as the equation below is veri�ed.

distADL 6 distLT 6 distdetour (4.1)

Finally, the di�erent restrictions introduced above are summarised in the Figure 4.1.

EVi(Ai, Bi)
8i 2 {1, 2, ..., nbEV }

Cj

8j 2 {1, 2, ..., nbStation}

Long
recharging time

Charge all-day long
dist(Bi, Cj)  distADL

Slow charger :
Residential PV installation

Short
recharging time

Charge during
lunch time

dist(Bi, Cj)  distLT

Make a detour
dist(Ai, Cj)+dist(Bi, Cj)

 distdetour

Fast charger:
Windturbine - PV farm

Figure 4.1 – Starting from an EV and a charging station given represented in the upper
white box, this schematic provides an overview of di�erent recharging time con�gurations
and their constraints. The main distinction on which the proposed classi�cation is based is

the long or short recharging time leading to a fast or slow charger.

5.2. G������ ��������� ��

In the following Subsections, the di�erent key steps are de�ned to present concretely
the direct application which is made here from this kind of algorithm. Respectively the
following Subsections present the generation of population, the �tness function, the ge-
netic evolution and the stopping condition.

Initial Population

Evaluation

Selection

Crossover
and Mutation

Termination
Criterion

Solution Set

yes

no

Figure 5.1 – Process of genetic algorithms.

Genetic algorithm based strategy

I The algorithm starts from an initial population made of a set of
genes, partly generated at random

I A gene represents a dispatch strategy, i.e. a set of associations
between a EVs and car charger

I Genes are evaluated using a fitness function which aims to maximise
the average of the level of charges at the end of the day

fitness(gene) =
nbEVX

i=1

SoCi ,T
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Figure 6.11 – Comparison for the genetic and intuitive strategy regarding the amount of
electricity recharged by EV.

6.6 Further approaches

The studies carried out up to now suggest some practical constraints faced by the com-
munity. Concretely they o�er an overview of applications which can be made with such
a simulator. The �rst two analyses, led in Section 6.3 and 6.4, show the limits and future
enhancements required. In particular, the introduction of "time slots" allows to several EVs
to recharge at a same car charger during a day. The main drawback of such a practice will
be the risk to promote some stations at the expense of others. For example, the domestic
PV plant could be defavorised compared with wind production due to the production con-
centrated on lunch time (citer un exemple ? ). Also, the implementation of a "road map",
through for example graph theory, seems also a signi�cant challenge to provide more re-
alistic results.

Then, these simulations allow a more accurate knowledge of the limit of the genetic
algorithm. The dispatching issue does not de�ne su�cient criteria to ensure a global or
more stable optimum. In particular the random feature of the initial population leads to
some limits since all possibilities are not systematically studied. Therefore a station located
very close to the destination of an EV might not be proposed by the algorithm if a gene
with this speci�c sequence is not pulled.
+ DOnner une piste de solution

Finally, the comparison between the two strategies studied in last Section 6.5 ensures
that the genetic evolution can improve the dispatching. Nevertheless the comparison of
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Figure 6.12 – Representation of the number of di�erences in the dispatching, between EVs
and charging stations, from a step to another during the genetic process.

To conclude this comparison, last computations are made to evaluate the variation of
the results provided by the genetic optimization. Ideed the amount of electricity recovered
with the priority based strategy is constant for a given community, whereas there are some
slight di�erences with the genetic optimization. The results gather in Table 6.6 con�rm
the fact that, in spite of some slight di�erences, the amount of electricity recharged by
EVs, in the genetic strategy, stays similar.

Run 1 Run 2 Run 3 Run 4 Run 5
286.86 278.77 286.65 270.87 279.79

Table 6.6 – Amount of local electricity recharged by EVs (in kWh) in �ve consecutive runs
of the genetic optimization, with �ve di�erent initial population.

6.5. C��������� ���� ��� �������� ����� �������� ��

N° step in the genetic process
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N
u

m
b

e
r 

o
f 

d
iff

e
re

n
ce

s 
in

 t
h

e
 d

is
p

a
tc

h
in

g

0

20

40

60

80

100

120

140

160

180

200

Figure 6.12 – Representation of the number of di�erences in the dispatching, between EVs
and charging stations, from a step to another during the genetic process.

To conclude this comparison, last computations are made to evaluate the variation of
the results provided by the genetic optimization. Ideed the amount of electricity recovered
with the priority based strategy is constant for a given community, whereas there are some
slight di�erences with the genetic optimization. The results gather in Table 6.6 con�rm
the fact that, in spite of some slight di�erences, the amount of electricity recharged by
EVs, in the genetic strategy, stays similar.

Run 1 Run 2 Run 3 Run 4 Run 5
286.86 278.77 286.65 270.87 279.79

Table 6.6 – Amount of local electricity recharged by EVs (in kWh) in �ve consecutive runs
of the genetic optimization, with �ve di�erent initial population.

Results

The energy community is made of

I 30 EVs

I 42 charging stations

Amount of electricity recharged

I Priority-base strategy 211 kWh

I Genetic strategy 279 kWh
EV
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+ The genetic strategy allows to recharge 32.2% more power

− The genetic strategy takes 35 more computation time

13 / 14



Scaling-up

Next steps: bigger, faster

±4000 green power stations(based on real data) 

±3800 EVs(with different journey configurations) 

Bing/Google map API for realistic distances and result visualisation tool 

More time-slots 

New dispatching algorithms

http://www.student.montefiore.ulg.ac.be/~s131697/hive/view/vehiclesMap.html
http://www.student.montefiore.ulg.ac.be/~s131697/hive/view/vehiclesMap.html


Scaling-up
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Figure 6.10 – Map of the community studied to compare the genetic and the intuitive
strategies. The dimension of the markers (circle and square) is linked to the nominal power

available.

to the genetic dispatching to improve the convergence.



Upgrading the dispatching algorithm  
for A-B-C rides

1. Compute, for each point B, the 150 nearest power stations in a radius of 
maximum 10km (the EV owner will have to select a station within this range) 

2. Build a graph where each point B is linked to power stations with interest in 
the 150 closest ones, i.e power stations with sufficient power compared to the 
energy needed in the time wasted at B. 

• To construct this graph, we need to choose a metric for edges. Two metrics 
are proposed: 
(i) the physical distance between the station and B 
(ii) the mathematical distance between the power of the station and the 
optimal power needed by the car to recharge the correct amount of energy.  

3. From the graph, compute a minimal spanning tree: the resulting tree gives 
to each point B at least one “near-optimal” charging station.



Results



III. 
Integrating communities



Renewable production  
needs storage and/or 

flexibility
Electric vehicles 

need renewable energy 
(CO2-free)

A viewpoint on the energy landscape



Existing relationships in the EVs content

MSP

CPO

EVs



Adding a new dimension

Green
MSP

CPO

EVs



« Drive Green  
and Local »

Retailer

Green 
MSP

EV drivers

Electricity  
MarketsGREEN : 2PM 

windy, sunny, Sunday

GREY : 6PM 
winter, no wind

CPOs



Retailer

Green 
MSP

EV drivers

Electricity  
MarketsGREEN : 2PM 

windy, sunny, Sunday

GREY : 6PM 
winter, no wind

CPOs

10€
8€

4€

9.5€ 7.75€
4.5€5€

3€

5 + 10 - 8 - 4 = 3€ 
4.5 + 9.5 - 7.75 - 3 = 3.25€

« Drive Green  
and Local »



Retailer

Green 
MSP

EV drivers

Electricity  
MarketsGREEN : 2PM 

windy, sunny, Sunday

GREY : 6PM 
winter, no wind

CPOs

10€
8€

4€

9.5€ 7.75€
4.5€5€

3€

Green & local assessment

PV / Wind turbine  
owner

e-miles

« Drive Green  
and Local »



The « Drive Green and Local » Concept

Incentives for EV drivers and RE producers

Drive green, pay less 

Play a serious game, become even greener, eventually get access to premium services, get 
free e-miles 

Be part of a community 

Incentives for CPOs

Green labelling of charging starting 

To the CPO, the Green MSP plays the role of a « classical » MSP able to practice dynamic 
pricing 

A Green MSP may offer to increase the use rate of its charging stations



IV. 
Décret “Communautés d’Energie 

Renouvelable”



Contexte

Actuellement, un cadre légal existe déjà pour le prosumer qui est le client 
résidentiel qui autoconsomme son électricité (photovoltaïque). Pour rappel, la 
déclaration de politique régionale du 25 juillet 2017 énonce que : « En 
s’appuyant sur l’expertise du régulateur, le décret et les arrêtés seront modifiés 
en vue d’établir un cadre de développement approprié des réseaux alternatifs et 
micro-réseaux, y compris citoyens, sous leurs différentes formes. L’émergence 
de ces réseaux se réalisera en étant attentif à une contribution équitable de 
l’ensemble des utilisateurs du réseau public ». 

La nouvelle réforme, portée par le projet de décret, favorise donc la création de 
communautés d’énergie renouvelable autorisant l’autoconsommation collective 
d’électricité, ce qui permet de s’affranchir de la dimension physique du réseau. 
Ainsi, tout en mobilisant le réseau public, plusieurs entités (personnes physiques 
ou morales), au sein d’un périmètre, pourront s’entendre pour mutualiser et 
synchroniser leur production et consommation électrique. 

Source : https://gouvernement.wallonie.be/home/presse/publications/les-communautes-denergie-renouvelable-pour-une-
meilleure-consommation-de-lenergie-1.publicationfull.html

https://gouvernement.wallonie.be/home/presse/publications/les-communautes-denergie-renouvelable-pour-une-meilleure-consommation-de-lenergie-1.publicationfull.html
https://gouvernement.wallonie.be/home/presse/publications/les-communautes-denergie-renouvelable-pour-une-meilleure-consommation-de-lenergie-1.publicationfull.html
https://gouvernement.wallonie.be/home/presse/publications/les-communautes-denergie-renouvelable-pour-une-meilleure-consommation-de-lenergie-1.publicationfull.html


Possibilités

Ce nouveau modèle permettra différentes combinaisons : 

• Soit un ménage produit plus qu’il n’en a besoin et s’associe avec d’autres ménages qui 
ne produisent pas afin de mutualiser leurs besoins énergétiques ; 

• Soit un immeuble résidentiel installe de manière commune des panneaux sur son toit afin 
de répartir la production avec les habitants de l’immeuble ; 

• Soit plusieurs entreprises s’associent afin de répartir leur production/consommation sur 
la journée afin de consommer au maximum lors des pics de production d’énergie et 
moins le reste du temps ; 

• Soit une autorité locale (ex.: CPAS) installe des panneaux sur un immeuble de logements 
sociaux afin de faire bénéficier les locataires d’une énergie verte à moindre coût. 

• Et bien d’autres combinaisons sont encore possibles. 

Source : https://gouvernement.wallonie.be/home/presse/publications/les-communautes-denergie-renouvelable-pour-une-meilleure-
consommation-de-lenergie-1.publicationfull.html

https://gouvernement.wallonie.be/home/presse/publications/les-communautes-denergie-renouvelable-pour-une-meilleure-consommation-de-lenergie-1.publicationfull.html
https://gouvernement.wallonie.be/home/presse/publications/les-communautes-denergie-renouvelable-pour-une-meilleure-consommation-de-lenergie-1.publicationfull.html
https://gouvernement.wallonie.be/home/presse/publications/les-communautes-denergie-renouvelable-pour-une-meilleure-consommation-de-lenergie-1.publicationfull.html


Objectifs

L’autoconsommation collective d’électricité : 

• Permettra, à terme, de faire des économies dans le développement et le renforcement 
du réseau de distribution et aura de manière générale un impact positif sur la facture des 
participants à ces communautés. 

• Permettra une meilleure intégration des énergies renouvelables. En effet, les énergies 
renouvelables sont des énergies dites intermittentes. La synchronisation de la 
production et de la consommation à une échelle locale permettra effectivement de 
mobiliser le réseau dans une moindre mesure, ce qui facilite en fin de compte son 
intégration à ce dernier. 

• Favorisera également la smartisation du réseau. Posséder un compteur intelligent sera 
essentiel pour pouvoir participer à une communauté d’énergie renouvelable (meilleur 
calibrage de la consommation), ce qui permettra in fine d’éveiller la société à une 
adaptation de son mode de consommation d’électricité et de rebooster la compétitivité 
énergétique wallonne. 

Source : https://gouvernement.wallonie.be/home/presse/publications/les-communautes-denergie-renouvelable-pour-une-meilleure-
consommation-de-lenergie-1.publicationfull.html

https://gouvernement.wallonie.be/home/presse/publications/les-communautes-denergie-renouvelable-pour-une-meilleure-consommation-de-lenergie-1.publicationfull.html
https://gouvernement.wallonie.be/home/presse/publications/les-communautes-denergie-renouvelable-pour-une-meilleure-consommation-de-lenergie-1.publicationfull.html
https://gouvernement.wallonie.be/home/presse/publications/les-communautes-denergie-renouvelable-pour-une-meilleure-consommation-de-lenergie-1.publicationfull.html


Prospective 
conclusions



The current landscape

Directly selling and buying to other prosumers : currently not really almost 
possible

(i) Physical problem: need to go through the distribution network ; difficulties to 
monitor who buys, who produces : there is a potential accounting problem,  
(ii) A regulation problem,  
(iii) Also, a « contracting problem »: prosumers may not want to spend time to 
manage transactions with other prosumers. 
… but wait… Décret CERs ! 

Less dependency on centralised structures

(i) EVs may offer such an eventuality…  
(ii) But the actual distribution network was clearly not designed for this.  



Decentralisation (& digitalisation)

What is a « distributed ledger » ? 
A distributed ledger is a consensus of replicated, shared, and synchronised digital data 
geographically spread across multiple sites, countries, or institutions. There is no central 
administrator or centralised data storage  
However, a peer-to-peer network is required as well as consensus algorithms to ensure 
replication across nodes is undertaken  
Ex: Blockchain 

Why a distributed ledger ? 
Transparency, reliability and low operational costs for managing transaction between 
prosumers 

And what about smart contracts ? 
Smart contracts are computer protocols that facilitate, 
verify, or enforce the negotiation or performance  
of a contract 

Towards ‘peer-to-peer’ distribution networks ?
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