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DOMAIN

We consider the following components:

• State space: X = {(x , y ) ∈ N2|x < n, y < m},

• Action space: U = {(1, 0), (−1, 0), (0, 1), (0,−1)},

• Reward signal: r ((x , y ), (i , j)) = R(g, F ((x , y ), (i , j))),

• Discount factor: γ = 0.99,

• Time horizon: T → +∞,

where g ∈ Rn×m for any n, m ∈ N, F ((x , y ), (i , j)) = (min(max(x+i , 0), n−1), min(max(y+
j , 0), m−1)) and R(g, (x , y )) returns the value of the cell located at (x , y ) in g. Note that
the reward signal is bounded by B = max(x ,y ) R(g, (x , y )). From these components, we
derive two different domains:

• Deterministic domain: The dynamics f are defined as follows:

f ((x , y ), (i , j)) = F ((x , y ), (i , j)),∀((x , y ), (i , j)) ∈ X × U.

• Stochastic domain: The dynamics f are defined as follows:

f ((x , y ), (i , j), w) =

{
F ((x , y ), (i , j)) if w ≤ 1

2 ,

(0, 0) otherwise,
∀((x , y ), (i , j)) ∈ X × U,

where 0 ≤ w ≤ 1 is drawn according to a uniform distribution. In this domain,
the reward signal is redefined by r ((x , y ), (i , j), w) = R(g, f ((x , y ), (i , j), w)).

Figure 1 describes an instance of the domain that you must use in all sections of this
assignment.
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Figure 1: Domain instance. The number in each cell represents the reward obtained while
reaching it after a move (e.g., if the agent moves up from the red cell, it receives a
reward equal to 5). (0, 0) corresponds to the upper-left corner of the grid. The two
coordinates refer to the line and to the column number, respectively. The initial state
of this instance is the red cell located at (3, 0).

INSTRUCTIONS

You are expected to deliver (i) your source code (in Python 3.7, a file per section and
named as sectionK .py where K is the section number - each missing one will cost you
a one point penalty) and (ii) a report which is structured according to the next sections.
We insist on the fact that the report is mandatory and that the source code needs
to use only standard programming libraries plus, possibly, NumPy and matplotlib. We
should also be able to execute your code, understand easily the results displayed. Both
domains must be considered while addressing each section of this assignment.

1 IMPLEMENTATION OF THE DOMAIN (2 POINTS)

Implement the different components of the domain instance described in Figure 1.
Implement a rule-based policy of your choice (e.g., always go left, select actions always
at random...) and describe it in your report. Simulate the policy in the domain through a
single trajectory of 10 steps, starting by the initial state x0 = (3, 0). Show the trajectories
in your report as a sequence of four tuples (x0, u0, r0, x1), ... , (x10, u10, r10, x11) (e.g., by
a screenshot of your terminal).

2 EXPECTED RETURN OF A POLICY (2 POINTS)

Implement a routine to estimate Jµ in this domain, where µ : X → U is a stationary
policy. Test your implementation with your rule-based policy of Section 1. Choose a
N which is large enough to approximate well the infinite time horizon of the policy and
motivate your choice using the discount factor γ. Display JN

µ (x) for each state x in a
table in your report.

3 OPTIMAL POLICY (3 POINTS)

Implement routines which compute p(x ′|x , u) and r (x , u) that define the equivalent
MDP of the domain. Afterwards, implement a routine which computes the sequence of
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QN -functions from these components using the dynamic programming principle. De-
termine the smallest N such that a greater value does not change the policy inferred
from the last Q-function of the sequence. Derive directly µ∗ from Q and show it in a
table in your report. Display JN

µ∗ for each state x in a table in your report.

4 SYSTEM IDENTIFICATION (5 POINTS)

Implement a routine which estimates r (x , u) and p(x ′|x , u) from a given trajectory
ht = (x0, u0, r0, x1, u1, r1, ... , ut−1, rt−1, xt ). Display the convergence speed of p̂ and
r̂ towards p and r in a curve plot using the infinite norm through a growing trajectory
generated by a random uniform policy. Compute Q̂ by using r̂ (x , u) and p̂(x ′|x , u) that
estimate the MDP structure. Display, in your report, the infinite norm between Q̂ and
Q for each trajectory length in a table in your report. Derive µ̂∗ from Q̂ and display
it in a table in your report. Display JN

µ̂∗ , along with JN
µ∗ , for each state x in a table in

your report. Explain the influence of the length of the trajectory on the quality of the
approximation Q̂.

5 Q-LEARNING IN A BATCH SETTING (8 POINTS)

5.1 OFFLINE Q-LEARNING (2 POINTS)

Sample a trajectory from a random uniform policy with a finite, large enough time ho-
rizon T . Motivate your choice of T . Implement a routine which iteratively updates
Q̂(xk , uk ) with Q-learning from this trajectory. Run your routine with a constant learning
rate α = 0.05. Derive directly µ̂∗ from Q̂ and display it in a table in your report. Display
JN
µ̂∗ , along with JN

µ∗ , for each initial state x , in a table in your report.

5.2 ONLINE Q-LEARNING (4 POINTS)

Implement an intelligent agent which learns Q with Q-learning using an ε-greedy policy.

The first experimental protocol is the following. The agent trains over 100 episodes
having 1000 transitions in the domain instance described in Figure 1. An episode al-
ways starts from the initial state (see Figure 1). The learning rate α is equal to 0.05
and the exploration rate ε is equal to 0.25. The values of α and ε are both constant
over time. The function Q̂ is updated after every transition. The transitions are used
only once for updating Q̂.

The second experimental protocol differs from the first one only by the learning rate
which is such that α0 = 0.05 and ∀t > 0,αt = 0.8αt−1.

The third experimental protocol is identical from the first one except that the one-step
system transitions are stored in a replay buffer and that at each time-step, the function
Q̂ is updated ten times by drawing ten transitions at random from the replay buffer.
Run the three experimental protocols and display for each of them, after each episode,
the value of ‖Q̂ − JN

µ∗‖∞ in a plot. Compare the results obtained.
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5.3 DISCOUNT FACTOR (2 POINTS)

Rerun the first abovementioned experimental protocols with γ = 0.4. What do you
observe in terms of convergence rate of the algorithm expressed as the speed at which
Q̂ converges to the Q-function of the new domain ?

5.4 Q-LEARNING WITH ANOTHER EXPLORATION POLICY (BONUS, 2 POINTS)

Implement another exploration/exploitation policy presented in the scientific literature.
Rerun the first experience from 6.2 by replacing the ε-greedy policy with this new policy.
Tune the parameters of your policy so as to maximize the expected return over a
single infinite time horizon. Discuss the results obtained at the light of the explora-
tion/exploitation tradeoff.
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