
ULiège
Prof. Damien Ernst

INFO8003-1
Optimal decision making

for complex problems

Assignment 2

Reinforcement Learning in a Continuous
Domain

DOMAIN

We describe the domain below:

• State space: X = {(p, s) ∈ R2||p| ≤ 1, |s| ≤ 3} and a terminal state1.

– A terminal state is reached if |pt+1| > 1 or |st+1| > 3.

• Action space: U = {4,−4}.

• Dynamics: ṗ = s, ṡ = u
m(1+Hill′(p)2) −

gHill′(p)
1+Hill′(p)2 − s2Hill′(p)Hill′′(p)

1+Hill′(p)2 ,
where m = 1, g = 9.81 and

Hill(p) =

p2 + p if p < 0
p√

1+5p2
otherwise.

– The discrete-time dynamics is obtained by discretizing the time with the
time between t and t + 1 chosen equal to 0.100s.

• Integration time step: 0.001.

• Reward signal:

r (pt , st , ut ) =


−1 if pt+1 < −1 or |st+1| > 3

1 if pt+1 > 1 and |st+1| ≤ 3

0 otherwise.

• Discount factor: γ = 0.95.

1A terminal state can be seen as a regular state in which the system is stuck and for which all the future
rewards obtained in the aftermath are zero.

Page 1 of 4



• Time horizon: T → +∞.

• Initial state: p0 ∼ U ([−0.1, 0.1]), s0 = 0.

This domain is a car on the hill problem, and will be referred by this name from now
on. Figure 1 shows an illustration of the domain.

Figure 1: Display of the position p = 0 and the speed s = 1 of the car.

INSTRUCTIONS

You are expected to deliver (i) your source code (in Python 3.7, a file per section and
named as sectionK .py where K is the section number - each missing one will cost
you a one point penalty) and (ii) a report which is structured according to the next
sections. We insist on the fact that the report is mandatory and that the source code
needs to use only standard programming librairies plus, possibly, NumPy, matplotlib
and those referred in the next sections. We should also be able to execute your code
and understand easily the results displayed.

1 IMPLEMENTATION OF THE DOMAIN (2 POINTS)

Implement the different components of the car on the hill problem. Your implementa-
tion of the dynamics should exploit the Euler integration method using the integration
time step specified in the domain. Make sure your implementation properly handles
the terminal state case. Implement a rule-based policy of your choice (e.g., always
accelerate, select actions always at random...) and describe it formally in your report.
Simulate the policy in the domain from an initial state and display the trajectory as a
sequence of tuples (x0, u0, r0, x1), ... , (x10, u10, r10, x11) (e.g., by displaying a screenshot
from your favourite terminal).

2



2 EXPECTED RETURN OF A POLICY IN CONTINUOUS DOMAIN (3
POINTS)

Implement a routine which estimates the expected return of a policy for the car on the
hill problem. Your routine should exploit the Monte Carlo principle. Choose a N which
is large enough to approximate well the infinite time horizon of the policy and motivate
your choice. Display, from 0 to N in a curve plot in your report, the expected return of
your rule-based policy defined in Section 1 starting from 50 initial states drawn from
the distribution specified in the domain statement.

3 VISUALIZATION (2 POINTS)

Implement a routine which produces a video from any car on the hill trajectory. Your
routine needs to produce the same output image as the function implemented in this
Python script (or an equivalent implementation) which produces an image of a given
state from the car on the hill problem. You may use your preferred Python programming
library to generate your video file. Simulate the policy in the domain from the state
(s0 = 0, p0 = 0) and save the video in a GIF file. Join it to your deliverable archive.

3

https://github.com/epochstamp/INFO8003-1/blob/master/continuous_domain/display_caronthehill.py


4 FITTED-Q-ITERATION (7 POINTS)

Implement a routine which computes Q̂N for N = 1, 2, 3 ... using Fitted-Q-Iteration. Use
the following supervised learning techniques:

• Linear regression,

• Extremely Randomized Trees,

• Neural networks.

– You need to build yourself and motivate your neural network structure.

These techniques are implemented in the scikit-learn and Keras programming librar-
ies. Propose two strategies for generating sets of one-step system transitions that will
be used in your experiments and motivate them. Propose two stopping rules for the
computation of the Q̂N -functions sequence and motivate them. Display Q̂N in a colored
2D grid for each action (from red to blue as values increase, and with a resolution of
0.01 for the state space display) in your report. Derive the policy µ̂∗N from Q̂N and dis-
play it in a colored 2D grid (red for action u = −4 and blue for action u = 4 and with
a resolution of 0.01 for the state space display) in your report. Estimate and display
the expected return of µ̂∗N - in a table for each supervised learning algorithm, one-step
system transitions generation strategy and stopping rule - in your report. Discuss the
impact on the results of the supervised learning algorithm, the stopping rules and the
one-step system transitions generation strategies.

5 PARAMETRIC Q-LEARNING (6 POINTS)

Implement a routine which computes a parametrized approximation of the Q-function
via the Parametric Q-Learning algorithm. Use a neural network as the approximation
architecture, and motivate its structure. Derive the policy µ̂∗ from Q̂ and display it in a
colored 2D grid (red for action u = −4 and blue for action u = 4 and with a resolution
of 0.01 for the state space display) in your report. Estimate and show the expected
return of µ̂∗ in your report. Design an experimental protocol to compare FQI and
parametric Q-learning through a curve plot where the x-axis is the number of one-step
system transitions and the y -axis is the expected return. Discuss the results obtained
by running this experimental protocol.

NORMALISED PARAMETRIC Q-LEARNING (BONUS, 5 POINTS)

Implement the online Q-iteration algorithm as seen in the lecture and run it through the
experimental protocol you have designed in Section 5 with a normalised update term
of the Q-function. Specify in the report the norm you have used. Discuss the impact of
this normalised term on the performances of the online Q-iteration algorithm.
"This bonus is conditional on the general quality of your work.

4


	Implementation of the Domain (2 points)
	Expected Return of a Policy in Continuous Domain (3 points)
	Visualization (2 points)
	Fitted-Q-Iteration (7 points)
	Parametric Q-Learning (6 points)

