

The suboptimality of μ_T^* with respect to μ^* is bounded

Damien Ernst, François Rozet and Valentin Vermeylen February 11, 2021

University of Liège - School of Engineering

Environment

Let consider a deterministic environment described by the dynamics

$$f: X \times U \mapsto X$$

and the reward function

$$r: X \times U \mapsto \mathbb{R}^+$$

where X is the state space and U the action space.

Return J^{μ}

The return $J^{\mu}: X \mapsto \mathbb{R}^+$ of a stationary policy $\mu: X \mapsto U$ is defined as

$$J^{\mu}(x) = \lim_{T \to \infty} \sum_{t=0}^{T} \gamma^{t} r(x_{t}, u_{t})$$
 (1)

with $u_t = \mu(x_t)$, $x_{t+1} = f(x_t, u_t)$ and $x_0 = x$. An interesting property is that

$$\|J^{\mu}\|_{\infty} \le \frac{B_r}{1-\gamma} \tag{2}$$

where $B_r = ||r||_{\infty}$ and iff $\gamma \in [0; 1)$. Indeed,

$$\lim_{T \to \infty} \sum_{t=0}^{T} \gamma^t = \lim_{T \to \infty} \frac{1 - \gamma^{T+1}}{1 - \gamma} = \frac{1}{1 - \gamma}$$

 $^{\|}F\|_{\infty} = \sup_{y \in Y} |F(y)|, \quad \forall F : Y \mapsto \mathbb{R}$

Truncated return J_T^μ

We define the truncated return $J_T^\mu:X\mapsto\mathbb{R}^+$ as the recurrence

$$J_T^{\mu}(x) = r(x, \mu(x)) + \gamma J_{T-1}^{\pi}(f(x, \mu(x))), \quad \forall T \ge 1$$
 (3)

with
$$J_0^{\mu}(x) \equiv 0$$
.

Relations between J^{μ} and J^{μ}_{T}

By definition, we have

$$J^{\mu}(x) = \lim_{T \to \infty} J_T^{\mu}(x) \tag{4}$$

for all $x \in X$. Similarly, we can also write

$$J^{\mu}(x) = J^{\mu}_{T}(x) + \gamma^{T} J^{\mu}(x_{T}) \tag{5}$$

which leads, using (2),

$$\|J^{\mu} - J_{T}^{\mu}\|_{\infty} \le \gamma^{T} \|J^{\mu}\|_{\infty} \le \frac{\gamma^{T} B_{r}}{1 - \gamma}$$
 (6)

We define the state-action value $Q_T: X \times U \mapsto \mathbb{R}^+$ by the recurrence

$$Q_T(x, u) = r(x, u) + \gamma \max_{u' \in U} Q_{T-1}(f(x, u), u'), \quad \forall T \ge 1$$
 (7)

with $Q_0(x) \equiv 0$. Similarly to J^{μ} , we have

$$Q(x,u) = \lim_{T \to \infty} Q_T(x,u)$$
 (8)

which is the state-action value over an infinite number of steps.

Optimal policy μ^*

A stationary policy μ^* is optimal iff it selects an optimal action when there remains an infinite number of steps.

$$\mu^*(x) \in \arg\max_{u \in H} Q(x, u) \tag{9}$$

or, equivalently,

$$Q(x, \mu^*(x)) = \max_{u \in U} Q(x, u)$$

Thus,

$$Q(x, \mu^{*}(x)) = r(x, \mu^{*}(x)) + \gamma \max_{u \in U} Q(f(x, \mu^{*}(x)), u)$$

$$= r(x, \mu^{*}(x)) + \gamma Q(x', \mu^{*}(x'))$$

$$= r(x, \mu^{*}(x)) + \gamma r(x', \mu^{*}(x')) + \gamma^{2} Q(x'', \mu^{*}(x''))$$

$$= J^{\mu^{*}}(x)$$

with $x' = f(x, \mu^*(x)), x'' = f(x', \mu^*(x')), ...$

T-optimal policy μ_T^*

In contrary, a stationary policy is T-optimal if it selects an optimal action when there remains exactly T steps.

$$\mu_T^*(x) \in \arg\max_{u \in U} Q_T(x, u) \tag{10}$$

or, equivalently,

$$Q_T(x, \mu_T^*(x)) = \max_{u \in U} Q_T(x, u)$$

Necessarily, μ_T^* is suboptimal with respect to μ^* , i.e.

$$J^{\mu^*}(x) \ge J^{\mu_T^*}(x) \tag{11}$$

Optimal truncated return $J_T^{\pi^*}$

However, choosing $u_t = \mu_{T-t}^*(x_t)$ for all $t \leq T$ is optimal. Then, we define

$$J_T^{\pi^*}(x) = \sum_{t=0}^T \gamma^t r(x_t, \mu_{T-t}^*(x_t))$$
 (12)

or, recurrently,

$$J_T^{**}(x) = r(x, \mu_T^*(x)) + \gamma J_{T-1}^{**}(f(x, \mu_T^*(x)))$$
 (13)

with $J_0^{\pi^*}(x) \equiv 0$. Interestingly,

$$J_T^{\pi^*}(x) = \max_{u \in U} Q_T(x, u) \ge J_T^{\mu^*}(x)$$

The notation π indicates a non-stationary policy.

Summary

- Optimal policy μ*
- T-optimal policy μ_T^*
- Return of the optimal policy J^{μ^*}
- Return of the *T*-optimal policy $J^{\mu_T^*}$
- Truncated return of the optimal policy $J_T^{\mu^*}$
- Optimal truncated return $J_T^{\pi^*}$

Theorem,

The suboptimality of μ_T^* with respect to μ^* is bounded.

$$\|J^{\mu^*} - J^{\mu_T^*}\|_{\infty} \le \frac{2\gamma^T B_r}{(1-\gamma)^2}$$
 (14)

By definition and given (13), we have

$$J^{\mu}(x) = r(x, \mu(x)) + \gamma J^{\mu}(f(x, \mu(x)))$$

$$J^{\pi^*}_{T}(x) = r(x, \mu^*_{T}(x)) + \gamma J^{\pi^*}_{T-1}(f(x, \mu^*_{T}(x)))$$

$$\geq r(x, \mu^*(x)) + \gamma J^{\pi^*}_{T-1}(f(x, \mu^*(x)))$$

Therefore,

$$J^{\mu^{*}}(x) - J^{\mu^{*}_{T}}(x) \leq J^{\mu^{*}}(x) - \left[r(x, \mu^{*}(x)) + \gamma J_{T-1}^{\pi^{*}}(f(x, \mu^{*}(x)))\right]$$

$$+ \left[r(x, \mu_{T}^{*}(x)) + \gamma J_{T-1}^{\pi^{*}}(f(x, \mu_{T}^{*}(x)))\right] - J^{\mu^{*}_{T}}(x)$$

$$\leq \gamma \left[J^{\mu^{*}}(f(x, \mu^{*}(x))) - J_{T-1}^{\pi^{*}}(f(x, \mu^{*}(x)))\right]$$

$$+ \gamma \left[J_{T-1}^{\pi^{*}}(f(x, \mu_{T}^{*}(x))) - J^{\mu^{*}_{T}}(f(x, \mu_{T}^{*}(x)))\right]$$

Thus, in norm,

$$\begin{split} \left\| J^{\mu^*} - J^{\mu_T^*} \right\|_{\infty} &\leq \gamma \left\| J^{\mu^*} - J^{\pi^*}_{T-1} \right\|_{\infty} + \gamma \left\| J^{\pi^*}_{T-1} - J^{\mu_T^*} \right\|_{\infty} \\ &\leq \gamma \left\| J^{\mu^*} - J^{\pi^*}_{T-1} \right\|_{\infty} \\ &+ \gamma \left\| J^{\pi^*}_{T-1} - J^{\mu^*} + J^{\mu^*} - J^{\mu_T^*} \right\|_{\infty} \\ &\leq 2\gamma \left\| J^{\mu^*} - J^{\pi^*}_{T-1} \right\|_{\infty} + \gamma \left\| J^{\mu^*} - J^{\mu_T^*} \right\|_{\infty} \\ &\leq \frac{2\gamma}{1-\gamma} \left\| J^{\mu^*} - J^{\pi^*}_{T-1} \right\|_{\infty} \end{split}$$

But since

$$J^{\mu^*}(x) - J_T^{\pi^*}(x) = J_T^{\mu^*}(x) + \gamma^T J^{\mu^*}(x_t) - J_T^{\pi^*}(x)$$

$$\leq \gamma^T J^{\mu^*}(x_t)$$

We have

$$\begin{aligned} \left\| J^{\mu^*} - J^{\mu_T^*} \right\|_{\infty} &\leq \frac{2\gamma}{1 - \gamma} \left\| J^{\mu^*} - J^{\pi^*}_{T - 1} \right\|_{\infty} \\ &\leq \frac{2\gamma}{1 - \gamma} \gamma^{T - 1} \left\| J^{\mu^*} \right\|_{\infty} \\ &\leq \frac{2\gamma^T}{1 - \gamma} \frac{B_r}{1 - \gamma} \end{aligned}$$

References i

Damien Ernst, Mevludin Glavic, Florin Capitanescu, and Louis Wehenkel. "Reinforcement learning versus model predictive control: a comparison on a power system problem". In: *IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)* 39.2 (2008), pp. 517–529.