The suboptimality of u*%

with respect to i* is bounded

¢

Damien Ernst, Francois Rozet and Valentin Vermeylen
February 11, 2021

University of Liége — School of Engineering



Environment

Let consider a deterministic environment described by the

dynamics
f XxU—X

and the reward function
r: X xUw—R"

where X is the state space and U the action space.



Return J#

The return J¥ : X — R* of a stationary policy p: X — U is
defined as

= lim ZW r(xe, ut) (1)

T—o0

with vy = p(xt), xe41 = f(xe, ur) and xop = x. An interesting

property is that
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where B, = ||r||_ and iff v € [0; 1). Indeed,
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IFlle =supyey |F(y)|, VF:Y =R



Truncated return J;

We define the truncated return J% : X — R as the recurrence
Jr(x) = r0x u(x)) + 74 (F 0 p(x))), YT =1 (3)

with J§(x) = 0.



Relations between J* and J%

By definition, we have

JH(x) = lim JE(x) (4)

T—oo

for all x € X. Similarly, we can also write
JH(x) = Jr(x) + T I (xT) (5)

which leads, using (2),
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State-action value function Qt

We define the state-action value Q1 : X x U — R™T by the
recurrence

Qr(x,u) = r(x,u) +7 max Qr_1(f(x,u),uv), VT >1 (7)
u'e
with Qo(x) = 0. Similarly to J*, we have

Q(x,u) = lim Qr(x,u) (8)

|
T—oo
which is the state-action value over an infinite number of

steps.



Optimal policy u* P

A stationary policy p* is optimal iff it selects an optimal action
when there remains an infinite number of steps.

p(x) € arg max Q(x, u) (9)
uc
or, equivalently,

Q(x, 1" (x)) = max Q(x, u)

uelU

Thus,
QUx, 1™ (x)) = r(x, 17 (x)) + v max Q(f(x, u*(x)), u)

= r(x 1" (x)) +7Q(X, 1" (X))
= r(x, 1 (x)) +yr(x, 1" (x) + 7 Q" 1 (x"))
= J"(x)

with x" = f(x, u*(x)), x" = f(x', p*(x’)), ...



T-optimal policy %

In contrary, a stationary policy is T-optimal if it selects an
optimal action when there remains exactly T steps.

pr(x) € argmax Qr(x, u) (10)
or, equivalently,
Qr(x,15(x)) = max Qr(x,u)

Necessarily, pu% is suboptimal with respect to p*, ie.

7 (x) = I (x) (11)



Optimal truncated return JT&

However, choosing v, = ;i .(x;) for all t < T is optimal.
Then, we define

T

S5 (x) = D r(xe, mr—o(x:) (12)

t=0

or, recurrently,
J7 (%) = r(x 07 (x)) + 1971 (F(x w7 () (13)
with JT"(x) = 0. Interestingly,

JF () = max Qr(x, u) > J¥ (x)
ue

The notation 7 indicates a non-stationary policy.



Summary

Optimal policy

T-optimal policy /%

Return of the optimal policy J*

Return of the T-optimal policy J*7

Truncated return of the optimal policy J

Optimal truncated return J7



Theorem

The suboptimality of p% with respect to p* is bounded.
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By definition and given (13), we have

JH(x) = r(x, p(x)) + vI*(F(x, u(x)))
JE () = r(x, i (x)) + 75 1 (F(x, (%))
> r(x, w*(x)) + yJIF_ 1 (F(x, p*(x)))

Therefore,

I (x) = ST (x) < S (x) = [r(x 17 (%)) + 97 (F(x, 17 (x)))]
+ [r(x, 17 (x)) + 771 (F(x, 17 (x)))] = S47(x)
<y [P (x, 17 (x)) = ST (F(x, 17 (x)))]
+ [JF_a(F(x 17 (x))) = J7(F (x, 17(x)))]

11



Proof i

Thus, in norm,

17 = P < A 17 = Sl 7 = L
S A =1 N
+ || = S+ =T
< 29[| = Safl [0 =

< —HJ“ L |
But since

() = JF () = I () + 7T () — I ()
< ’YTJH* (Xt)
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Proof iii

We have
o — )| < 2 - HJ“ — 74l
27 o T-1
ST 1]l
2" B
—1—q1—x
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