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RL basics



RL basics: MDP

Single-agent reinforcement learning (SARL)
Markov decision process (MDP)

Figure: RL environment.

Defined by:

A set of states s ∈ S.

A set of actions u ∈ U .

Transition function:
st+1 ∼ P(st+1|st , ut).

Reward function:
rt = R(st+1, st , ut).

Policy: π(ut |st).

The agent goal is maximize its total expected sum of (discounted) rewards∑T
t=0 γ

trt with γ ∈ [0, 1), obtained with the optimal policy π∗.

Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An
Introduction. A Bradford Book, Cambridge, MA, USA.
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RL basics: Value-based methods

Value-based methods:

State Value of a policy π:

V π(st) = Eπ [rt + γV π(st+1)|st ]

State-Action Value of a policy π:

Qπ(st , ut) = Eπ [rt + γQπ(st+1, ut+1)|st , ut ]

The optimal policy is:

π∗(st) = argmax
u

Qπ∗(st , u)
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RL basics: DQN

DQN: Q-learning with a neural network parametrised by θ:

L(θ) = E〈st ,ut ,rt ,st+1〉∼B

[(
rt + γmax

u∈U
Q(st+1, u; θ′)− Q(st , ut ; θ)

)2]

The replay buffer B is a collection of transitions.

Sampling transitions allows to update the network.

θ′ denotes the parameters of the target network, a copy of θ that is
periodically updated.

To play Atari games, θ is a CNN.

When the environment is partially observable (POMDP), θ is a
recurrent network (DRQN) and B stores sequences of transitions.
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RL basics: Policy-based methods

We denote the discounted sum of reward of a trajectory by

Gt(τ) =
T∑
j=0

γj rt+j where τ = (st , ut , rt , st+1, ut+1, .., sT )

Reinforce:

∇θJ(θ) = Eτ∼πθ

[(
T∑
t

Gt(τ)∇θ log πθ(ut , st)

)]
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RL basics: How to improve reinforce?

Smaller variance with a baseline b:

∇θJ(θ) = Eτ∼πθ

[(
T∑
t

(Gt(τ)− b)∇θ log πθ(at , st)

)]

Or Q Actor-Critic:

Q(st , ut , ) = E(rt ,st+1,...,sT ) [Gt(τ)]

∇θJ(θ) = Eτ∼πθ

[(
T∑
t

Q(st , ut ;φ)∇θ log πθ(ut , st)

)]
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RL basics: Advantage Actor-Critic

Advantage Actor-Critic, the baseline is the Value function:

Actor θ, learns the policy:

∇θJ(θ) = Eτ∼πθ

[(
T∑
t

A(st , ut ;φ)∇θ log πθ(ut , st)

)]

Critic φ, learns the advantage Q(st , at)− V (st):

A(st , ut ;φ) = rt + γV (st+1;φ)− V (st ;φ)
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RL basics: Recap

Markov Decision Process

Value-based methods

DQN
DRQN

Policy-based methods

Reinforce + improvements
Advantage Actoc-Critic
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Multi-Agent

Reinforcement Learning



MARL: Framework

Markov Game (also referred to as stochastic Game) [n,S,O,Z,U , r ,P, γ]:

A set of n agents, each one is represented by a or ai , i ∈ {1, ..., n}.

A set of states s ∈ S.

An observation function O : S × {1, ..., n} → Z.

A set of action spaces U = U1 × ...× Un, one per agent uait ∈ Ui .

A transition function: st+1 ∼ P(st+1|st ,ut) with ut =
⋃

i∈{1,..,n} u
ai
t .

A reward function per agent: rait = Rai (st+1, st ,ut), sometimes
shorten r(st ,ut).

Agents sometimes store their history τ at ∈ (Z × U)t .

The goal of each agent ai is to maximize its total expected sum of
(discounted) rewards

∑T
t=0 γ

trait .
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MARL: Different settings

In Multi-agent settings, the goal of each agent may differ:

1 Cooperative setting: all agents share a common goal.
Examples: traffic control, robotics teams,...

2 Competitive setting: the gain of an agent is equivalent the loss of
other agents.
Often referred as zero-sum setting, because the sum of rewards of all
agents sums to zero.
Examples: 1v1 board games, 1v1 video games,...

3 General sum setting: lies in between the two others.
Examples: everything else that is not cooperative or competitive, 5v5
video games,...
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Cooperative setting



Cooperative: environment example

StarCraft multi-agent challenge (SMAC).
Dec-POMDP environment based on StarCraft 2.
All agents learn to cooperate against the built-in AI: this is not a
competitive setting because the built-in AI is stationary.

Figure: SMAC example (3s5z).

https://github.com/oxwhirl/smac

https://youtu.be/VZ7zmQ_obZ0
Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G., Nardelli, N., Rudner, T.

G., ... Whiteson, S. (2019). The starcraft multi-agent challenge.
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Cooperative: Dec-POMDP

In a cooperative setting, it is possible to have a single reward function,
each agent receives a same global reward:

ra1t = rant = rt = R(st+1, st ,ut) : S2 × U → R

Such Markov Games are called Decentralised-POMDP.

Figure: Dec-POMDP.
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Cooperative: Centralised controller

Centralised controller:

One agent controls all actions.

A single joint actions space U1 × ...× Un.

Problems?

Joint actions space scales exponentially with n.

What about the partial observability?
→ Not possible to centralise.

Solutions?

1 Decentralised controller.
→ Naive learner: train each agent with SARL algorithms.

2 Centralised training with decentralised execution (CTDE).
→ Benefit from supplementary information during training, such as
the entire state of the game.
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Cooperative: Naive learner

Naive learning:

Ignore the fact that there are multiple learning agents.

Provide a first baseline to compare algorithms.

Easy to implement.

Not so young: a tabular version with IQL (Tan 1993).

Challenges:

Non-stationarity:
Other agents are also learning and their policy changes over time.

Credit assessment:
How an agent learns whether its actions is the one that lead to good
(or bad) reward?
How an agent maximises the joint actions reward knowing only its
action?
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Cooperative: Value-based methods in CTDE

Naive learner: Independent Q-Learning (IQL)
→ Each agent learns its individual Qa(τ at , u

a
t ) independently.

Problem: How to ensure that arg maxuat Qa(τ at , u
a
t ) maximises Q(st ,ut)?

Solution: Learn Q(st ,ut) as a function of all Qa(τ at , u
a
t ) during training.

Qa are not anymore Q function but utility function used to select actions.

Condition: Individual Global Max (IGM):

arg max
ut

Q(st ,ut) =


arg maxua1t

Q1(τ a1t , u
a1
t )

:
:

arg maxuant Qn(τ ant , u
an
t )
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Cooperative: VDN and QMIX

How to satisfy IGM?
Value Decomposition Network:

Q(st ,ut) =
n∑

i=1

Qai (τ
ai
t , u

ai
t )

Problems:

Addition does not allow to build complex functions.

Current state information st is not considered.
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Cooperative: QMIX

How can we build non-linear factorisation satisfying IGM?

QMIX idea is to enforce monotonicity:

∂Q(st ,ut)

∂Qa(τ at , u
a
t )
≥ 0 ∀a ∈ {a1, .., an}

How to build a non-linear monotonic factorisation of Q(st ,ut) as a
function of every Qa(τ at , u

a
t ) and st with neural networks?

In QMIX, monotonicity is ensured by constraining a hypernetwork. This is
a neural network that computes the weights of a second neural network.
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Cooperative: QMIX

In QMIX:

A hypernetwork hp takes the state st as input and computes the
weights of a second neural network.

These weights are constrained to be positive and then used in a feed
forward network ho to factorise Q(st ,ut) with the individual Qa.

A neural network made of monotonic functions and strictly positive
weights is monotonic with respect to its inputs.

→ Qmix(st ,ut) = ho (Qa1(), ..,Qan(), hp(st))

The optimisation procedure follows the same principles of DQN algorithm
and is applied to Qmix(st ,ut).
Parameters of individual network are shared to speed up learning.
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Cooperative: QMIX architecture

Figure: QMIX architecture.

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., Whiteson, S.
(2018). Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning.
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Cooperative: QMIX results

Rashid, T., Samvelyan, M., Schroeder, C., Farquhar, G., Foerster, J., Whiteson, S.
(2018). Qmix: Monotonic value function factorisation for deep multi-agent
reinforcement learning.
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Cooperative: Policy-based methods in CTDE

Naive learner: Independent Actor-Critic (IAC)
→ Each agent learns its actor and critic independently.

Two possible critics:

IAC-V: A(τt , ut ;φ) = r + γV (τt+1;φ)− V (τt ;φ).

IAC-Q: A(τt , ut ;φ) = Q(τt , ut ;φ)−
∑

ua πθ(τt , u
a)Q(τt , u

a;φ).

Problem: How to benefit from centralised information such as st?

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S. (2018, April).
Counterfactual multi-agent policy gradients.
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Cooperative: COMA

Problem: How to benefit from centralised information such as st?

Solutions proposed by Foerster, et. al. (2018) (COMA):

Critic is only used during training.

→ Centralised critic that computes the advantage based on st .

A(s, uat ;φ) = r + γV (st+1;φ)− V (st ;φ)

Problems:

Based on global rewards rt .

The centralised critic does not solve the credit assignment problem.
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Cooperative: COMA

Solution: use a counterfactual baseline.

Inspired from difference reward:

Da = r(s,u)− r(s, (u−a, ca))

The common reward r(s,u) is compared to a reward obtained when
agent a executes a default action ca, actions of other agents (u−a)
unchanged.

Any action ua that maximises r(s,u) also maximises Da.

Problems:
1 A simulator is required to obtain r(s, (u−a, ca)), but these can be

approximated.
2 One needs to decide which action is ca.
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Cooperative: COMA

Foerster, et. al. (2018) overcomes these problems with a centralised critic
that computes difference rewards by learning Q(s,u).

For each agent a, the advantage is:

Aa(s,u) = Q(s,u)−
∑
u′a

πa(u′a|τ a)Q(s, (u−a, u′a))

Problem: (|U1| ∗ ... ∗ |Un|) Q values must be computed.

In practice, a Q network has one ouput for each possible action.

Here, this leads to |U1| ∗ ... ∗ |Un| outputs which is impractical.

COMA solution: the critic takes as input u−a and computes only |Ua|
outputs.

Note that this method is only possible for discrete action spaces, while it is
possible to evaluate

∑
u′a π

a(u′a|τ a)Q(s, (u−a, u′a)) with Monte Carlo or
Gaussian policies in continuous action spaces.
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Cooperative: COMA architecture

Figure: COMA architecture.

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S. (2018, April).
Counterfactual multi-agent policy gradients.
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Cooperative: COMA results

Foerster, J., Farquhar, G., Afouras, T., Nardelli, N., Whiteson, S. (2018, April).
Counterfactual multi-agent policy gradients.
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Cooperative: COMA vs QMIX

Figure: Median win rates for QMIX, COMA, and IQL on easy SMAC scenarios.

Samvelyan, M., Rashid, T., De Witt, C. S., Farquhar, G., Nardelli, N., Rudner, T.
G., ... Whiteson, S. (2019). The starcraft multi-agent challenge.
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Cooperative: QVMix

QVMix is an extension of the Deep-Quality value family of algorithms to
multi-agent.

Principles of DQV: learn Q(.; θ) and V (.;φ) at the same time.

L(θ) = E〈st ,ut ,rt ,st+1〉∼B

[(
rt + γV (st+1;φ′)− Q(st , ut ; θ)

)2]
. (1)

L(φ) = E〈st ,ut ,rt ,st+1〉∼B

[(
rt + γV (st+1;φ′)− V (st ;φ)

)2]
, (2)

Overcome the overestimation problem of Q-Learning.

In QVMix, the architecture of V is the same as Q in QMIX, except that
there is a single output since actions are ignored.
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Cooperative: QVMix results

Leroy, P., Ernst, D., Geurts, P., Louppe, G., Pisane, J., Sabatelli, M. (2020).
QVMix and QVMix-Max: Extending the Deep Quality-Value Family of Algorithms to
Cooperative Multi-Agent Reinforcement Learning
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Cooperative: QVMix overestimation bias

Figure: QVMix overestimation comparison.

Leroy, P., Ernst, D., Geurts, P., Louppe, G., Pisane, J., Sabatelli, M. (2020).
QVMix and QVMix-Max: Extending the Deep Quality-Value Family of Algorithms to
Cooperative Multi-Agent Reinforcement Learning
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Cooperative: more methods

MAVEN: Multi-agent variational exploration.

QTRAN: Learning to factorize with transformation for cooperative
multi-agent reinforcement learning.

QPLEX: Duplex Dueling Multi-Agent Q-Learning.

LIIR: Learning individual intrinsic reward in multi-agent reinforcement
learning.

MADDPG: Multi-Agent Actor-Critic for Mixed
Cooperative-Competitive Environments.

MAAC: Actor-Attention-Critic for Multi-Agent Reinforcement
Learning

Pascal Leroy INFO8003-1 Optimal decision making for complex problems Multi-Agent Reinforcement LearningApril 2022 35 / 88



Cooperative: Recap

Dec-POMDP

Value-based methods

IQL: each agent learns without considering other agents.
QMIX: factorise the Q(s,u) as a function of Qa and monotonicity.
QVMIX: learn both Q and V to not overestimate Q(s,u).

Policy-based methods

IAC-V, IAC-Q: each agent learns without considering other agents and
with different critics.
COMA: centralised critic that computes a counterfactual baseline.
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Communication



Communication

How evolves Markov Game with communication?
Communication can be part of the feedback loop: agents take action and
send message based on local observations and messages received.

Figure: Communication framework (Fombellida, A. (2020) Battlefield
Coordination using Multi-Agent Reinforcement Learning)
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Communication: RIAL

The two first methods: RIAL and DIAL (”Learning to communicate with
deep multi-agent reinforcement learning”).

Same as a Markov Game.

Agents select discrete communication action m ∈M.

No communication protocol: agents must learn it (difficult).

More details in the paper.

Reinforced inter-agent learning (RIAL) is a first approach:

Each agent learns Qa(oat ,m
−a
t−1, ut , ht−1) (called Q-Net).

The network outputs is divided in |U| Qa
u and |M| Qa

m to avoid
computing |U||M| outputs.

Actions and messages are chosen separately from Qa
u and Qa

m by an
action selector.
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Communication: RIAL

Implementation tricks:

No more replay buffer because
of non-stationarity.

Previous action and message are
inputs at next timestep.

Parameter sharing to speed up
training.

Gradient path in red.
Figure: RIAL architecture.

Limitation: Agents do not provide feedbacks on messages sent by others.

Foerster, J. N., Assael, Y. M., De Freitas, N., Whiteson, S. (2016). Learning to
communicate with deep multi-agent reinforcement learning.
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Communication: DIAL

Second approach: differentiable inter-agent learning (DIAL) address the
feedback limitation by integrating the gradient through the communication
channel.

In RIAL, each agent is trained separately while with DIAL, CTDE is now
exploited since training is performed across agents.

Q-Net is now called C-Net and outputs:

1 The Q value, which is fed to the action selector.

2 A real-valued message.

Constraint: the real-valued message cannot be used during execution.

DIAL introduces a discretise/regularise unit (DRU).

At training, the DRU regularises messages.

At execution, the DRU discretises messages.
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Communication: DIAL

DIAL extends to continuous
messages easily.

DIAL perform better than
RIAL.

Results in the paper.

This is the first attempt to
learn to communicate with
deep RL.

Figure: DIAL architecture

Foerster, J. N., Assael, Y. M., De Freitas, N., Whiteson, S. (2016). Learning to
communicate with deep multi-agent reinforcement learning.
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Other communication challenges

Successor methods to DIAL and RIAL tackle other challenges with a new
framework.

Agents send and receive messages before taking their action, allowing
multi-stage communication (several messages before taking action).

Challenges and some associated papers:

Adapting to various number of agents:
CommNet and BiCNet.

Targeted communication:
IC3Net, TarMac and ATOC.

Limit the number of messages:
SchedNet and GACML.
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Competitive setting



Competitive

In a two player competition, the gains of one agent is equal to the loss of
the other.

We then define a new reward function rait = Rai (st+1, st , u
ai
t , u

a−i
t ).

The goal of agent ai is to maximise this reward while for its opponent a−i ,
the goal is to minimise it.

Minimax-Q (Littman 1994) ideas:

V π∗(s) = max
π

min
ua−i

∑
uai∈Ui

Qπ∗(s, uai , ua−i )π(ai |s)

Qπ∗(s, uai , ua−i ) = Rai (.) + γ
∑
s′

P(s ′|s, uai , ua−i )V π∗(s ′)
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Competitive: Minimax-Q

Littman has shown that is possible to learn these Q and V :

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforcement
learning
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Competitive: AlphaGo

From AlphaGo to AlphaGo Zero: an overview of how DeepMind mastered
the game of Go.

Reminder of AlphaGo:

Two networks are trained:
1 A policy network that predicts best moves (trained in supervised

learning with expert moves and improved with reinforcement learning).
2 A value network that predicts the winner of the game.

These two are combined with MCTS to provide a lookahead search
and led to the first version of AlphaGo.

”Mastering the game of Go with deep neural networks and tree
search”.

AlphaGo zero blog: https:

//deepmind.com/blog/article/alphago-zero-starting-scratch
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Competitive: AlphaGo Zero

”Mastering the game of Go without human knowledge”.

Main differences with AlphaGo:

1 No supervised learning and no human data.

2 A single neural network is trained.

3 Input features number is reduced (see paper for details).

4 Simpler tree search that relies only on the trained network.
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Competitive: AlphaGo Zero

The neural network fθ:

Input s: raw game board actual position and 7 previous positions.

Outputs (p, v): a vector of probabilities and a value:

The probability of selecting each move.
An estimation of the probability to win from s.

Architecture details in the paper.

The neural network fθ(s) = (p, v) is trained in self-play: the agent plays
lot of games against itself.
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Competitive: AlphaGo Zero

To select action from a state s, AlphaGo Zero uses (p, v) to perform
MCTS search to obtain the best moves:

1 Perform a MCTS search to obtain probabilities π of selecting moves.

2 They showed that π provides better actions than p.

3 Game ends with a winner z that provides a sample of value v .

4 The network is trained so that (p, v) gets closer to (π, z) to improve
MCTS search.

Note that the notation has changed: an action is represented by a.
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Competitive: AlphaGo Zero self-play

Figure: How an episode is conducted in AlphaGo Zero.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ...
Hassabis, D. (2017). Mastering the game of go without human knowledge.
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Competitive: AlphaGo Zero MCTS

How fθ(s) guides the MCTS search in AlphaGo Zero to select an action?

Each edge (s, a) stores:
1 A prior probability P(s, a).
2 A visit count N(s, a).
3 An action-value Q(s, a).

From the root, iteratively select move that maximises:

Q(s, a) + U(s, a) ; U(s, a) ∝ P(s, a)

1 + N(s, a)

When a leaf s ′ is reached, the network generates
fθ(s ′) = (P(s ′, .),V (s ′)).

Each traversed edge is updated:
1 N(s, a) = N(s, a) + 1.
2 Q(s, a) = 1/N(s, a)

∑
s′|s,a→s′ V (s ′).

Finally, π = αθ(s) ∝ N(s, a)1/τ (τ is a temperature parameter here).
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Competitive: AlphaGo Zero MCTS

Figure: MCTS in AlphaGo Zero.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ...
Hassabis, D. (2017). Mastering the game of go without human knowledge.
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Competitive: AlphaGo Zero training

loss = (z − v)2 − πT logp + c ||θ||2

Figure: Training in AlphaGo Zero.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., ...
Hassabis, D. (2017). Mastering the game of go without human knowledge.
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Competitive: AlphaGo Zero numbers

Some random numbers after 3 days of training:

4.9 million games generated.

1600 games for each MCTS (∼ 0.4s).

700, 000 minibatches of 2, 048 states.

Outperform AlphaGo Lee after 36 hours.

AlphaGo Zero on 4 TPUs and AlphaGo Lee on 48 TPUs.
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Teaser

https://www.youtube.com/watch?v=kopoLzvh5jY
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Hide and Seek environment

Hiders (blue) trie to avoid line
of sight of the Seekers (red).

Objects can be grabbed or
locked.

Preparation phase: only the
hiders can perform action in the
beginning.

Team based reward

Hiders: +1 if hidden, -1 if seen.

Seekers: opposite.

0 if no one is seen by the
seekers.

Time limit: 240
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Hide and Seek environment

Action space:
Move: discretized forces along x and y axis and torque around their z
axis.
Grab or lock the closest object. 2 binaries. (Only object in front of
them within a small range)

Grab: the object is bound to the agent while boolean is True.
Lock: the object is locked and cannot be moved. Unlocking is available
if the agent is part of the agent team that has locked the object.

Observation space:
Position, velocity and size(or objects), in a 135 degree cone in front of
the agent.
”LIDAR”: 30 range sensors around the agent.

Go to the blog!

Figure: https://openai.com/blog/emergent-tool-use/

Pascal Leroy INFO8003-1 Optimal decision making for complex problems Multi-Agent Reinforcement LearningApril 2022 58 / 88

https://openai.com/blog/emergent-tool-use/


Hide and Seek scenarios

Normal environment:

1 to 3 hiders, 1 to 3 seekers

3 to 9 boxes (at least 3
elongated)

2 movable ramps

random walls and rooms

random initial position
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Hide and Seek scenarios

Quadrant environment:

2 hiders, 2 seekers

2 boxes inside the room

Seekers spawn outside the room

1 movable ramp that cannot be
blocked

1 fixed room with 1 or 2 random
doors
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Hide and Seek optimization

Actor-Critic → 2 sets of parameters.

The actor network, optimised with PPO and GAE, produces an action
distribution based on the agent observations.

The critic network that predicts the discounted future returns.

Use centralize training, decentralized execution (CTDE).

At training time: the critic has access to the full state to learn a
centralized value function.
At execution time: the policy network is used normally.
No counterfactual baseline.

Self-play: each agent acts independently and shares the same network
parameters, playing against itself.

5% chance of using a past policy version to improve robustness.
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Hide and Seek architecture
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Hide and Seek entity-centric observations

The observation is composed of different entities: agents, boxes,
ramps.

The first step is to embed each entity. Same objects are embedded
with the same parameters.

Self information: the concatenation of Lidar (that went through a
circular 1-D convolution) with position and velocity of the agent are
embedded with a fully connected layer.

There are three other entities. Each one is concatenated with the
embed of the self information before their own embed:

1 Other agents information (N − 1): position and velociity.
2 Box information (Number of boxes): position, velocity and size.
3 Ramp information (Number of ramps): position and velocity.

The number of these entities varies depending on the scenario.
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Hide and Seek Policy optimization

The second step is to pass all embedded entities through a residual
self-attention block (unobservable entities are masked away).

Attention mechanisms allow to capture object-level information.

”A self-attention module takes in n inputs, and returns n outputs.
The self-attention mechanism allows the inputs to interact with each
other (“self”) and find out who they should pay more attention to
(“attention”). The outputs are aggregates of these interactions and
attention scores.”

The third step is to concatenate the average-pool entities
embedding with self information.

The fourth step is to pass through a LSTM.

The last step is to pass through the three sperate heads (one for
each action type)

Full parameter values are detailed in the paper.
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Hide and Seek Emergent behavior

In both scenarios, different strategies emerge as the agents train →
autocurriculum. They can be seen on the blog.
In the paper, they insist on the fact that there is no incentives for
agents to interact with objects, this is only a result of autocurriculum
induced by the competition.
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Hide and Seek Emergent behavior

Tool interaction

Agents learn to divide the labor: Against box surfing, 2 and 3 hiders
lock 25% and 36% more boxes than a single hider.

It is possible to track the stages of emergent policy with the
interaction of tools in the environment.
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Hide and Seek Emergent behavior

Scale matters!

In the Figure, the number of episode (blue) and time (orange) to
reach stage 4 (ramp defense) in term of batch size.

The size of batch size is the number of transition chunks.

The model uses 1.6 million parameters.
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Hide and Seek Evaluation

Evaluation

Reward in Multi-Agent is not sufficient to evaluate agents.
Are agents improving evenly or have they stagnated?

ELO score (or Trueskill) allows to establish a ranking and measures
improvement compared to other policies. However, it does not
differentiate adaptation and improvement of already learned skills.

Their propose two evaluations scheme.

1 Comparison to intrinsic motivation.

2 Inteligence tests: transfer and fine-tuning.
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Hide and Seek Intrinsic motivation

Goal? Compare behavior learned in Hide and Seek with common
unsupervised exploration techniques.

Underlying idea: Can agent behave like human with these
unsupervised exploration methods.

Count based exploration: the agent receives reward when visiting
states that has not been visited much.

Very dependent of state representation.

Result: The learned behavior is very not human-like.

See blog results.
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Hide and Seek Intelligence tests

Goal? Use transfer learning to evaluate network parameters on five
new tasks.
Three configuration:

1 Trained from scratch
2 Pre-trained with Hide and Seek and fine tuned.
3 Pre-trained with count based and fine tuned.

These tests include supervised learning and reinforcement learning but
are single-agent:

1 Object counting
2 Lock and return
3 Sequential lock
4 Construction from blueprint
5 Shelter construction

Notes:
Same spaces and observation (fake hiders)
Object counting task: the action heads are replaced by a classification
head (7-classes representing whether 0 through 6 boxes have gone to
the left)
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Hide and Seek Intelligence tests

Results:

Pre-trained with Hide and Seek configuration is better on Lock and
return, Sequential lock and Construction from blueprint.

Pre-trained with count-based configuration is better on Object
counting.

Pre-trained with Hide and Seek configuration achieves the same
results as the trained from scratch configuration on Shelter
construction but sligthly slower.
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More intelligence tests

Intelligence tests are performed at different phases of emergence.

Improves on navigation and memory as it progresses.

Object counting is transient.

Performance on manipulation tasks (constructions) is uncorrelated to
the phases. The most surprising: policy from phase 1 performs
comparably well to others.
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Alternative games

Hide and Seek with food reward.

Can eat food if:

after preparation phase.
hiders not seen by seekers.
hider close and visible to the food.

Figure: Hide and Seek with food reward.
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Alternative games

Hide and Seek with food reward: Results.

Incentivized to build forts around food.

Four levels of skill progression (see Figure)

Figure: Hide and Seek with food reward results
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Alternative games

Hide and Seek with dynamic food.

Only one food that disappear when eaten.

It reappears in the center of the map (in a square of length 1/5 of
game area size).

The hidders need to learn to build large forts.

emerge after 45 billions samples.

if food region ratio is 1/6, emerge after 15 billions samples.

if food region ratio is 1/4, the hiders ignore food and protect
themselves.
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Conclusions

Simple game rules and multi-agent competition can induce agents to
learn complex strategies and skills.

Intelligent tests, using transfer learning, can be used to evaluate
learning progress and to compare agents in a same domain.

Multi-agent autocurricula can lead to physically grounded and
human-relevant behavior (in opposition to unsupervised exploration
techniques).
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Competitive: Other works

Recent work has been done in competitive games:

Dota 2, OpenAI Five (2019): Dota 2 with large scale deep
reinforcement learning.

StarCraft 2, AlphaStar (2019): Grandmaster level in StarCraft II using
multi-agent reinforcement learning.

Quake 3 capture the flag (2019): Human-level performance in 3D
multiplayer games with population-based reinforcement learning.
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Adversarial attacks



Adversarial attacks

It is possible to trick a neural network with small perturbations.

Figure: Adversarial attack in classification.

Goodfellow, I. J., Shlens, J., Szegedy, C. (2014). Explaining and harnessing
adversarial examples.
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Adversarial attacks

”Adversarial policies: Attacking deep reinforcement learning”.

It is not possible to modify the observation of an other agent.

But can we attack them with adversarial observation?

This is the goal of this paper: learn to win by not directly playing the
game but by performing adversarial policies.

Framework: Zero sum Markov Game.

Goal: black box attack by learning adversary policies.

Examples: https://adversarialpolicies.github.io/
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Adversarial attacks

How to attack a trained agent?

Victims are trained with self-play.

In the paper, they take pre-trained networks between 680 and 1360
millions timesteps.

By fixing the victim policy πν , an adversarial policy πα is trained.

Note that the agent is now in a MDP since πν is now stationary.

Adversarial policy is trained for 20 millions timesteps.

Attacks are validated by masking the position of the attacker from the
victim which now wins: the attacker did not learn a strong policy.

Fine-tuning against the attacker allows to defend against these attacks.

Pascal Leroy INFO8003-1 Optimal decision making for complex problems Multi-Agent Reinforcement LearningApril 2022 81 / 88



Summary

A non-exhaustive overview of multi-agent reinforcement learning.

Cooperative setting with partial observations:
1 QMIX
2 COMA
3 QVMIX

Communication:
1 RIAL
2 DIAL

Competitive setting:
1 Minimax-Q
2 AlphaGo Zero
3 Hide and seek

Adversarial policies
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